2015-2036

MMM – City Wide Integrated Public Transport Plan

INTEGRATED PUBLIC TRANSPORT N E T W O R K

MMM IPTN Team 09 September 2019 Revision 6.0

Annexure i

MMM – City Wide Integrated Public Transport Plan

Content

I	TRAFFIC IMPACT STUDY	I-3
I.1	TRAFFIC IMPACT STUDY - MAPHISA/MOSHOESHOE CORRIDOR	I-3
I.2	TRAFFIC IMPACT STUDY – OR TAMBO CORRIDOR	I-4
I.3	TRAFFIC IMPACT STUDY – CBD PHASE 1C (BRANDWAG)	I-5
I.4	WAAIHOEG BRIDGE STUDY	I-6

1

I Traffic Impact Study

I.1 Traffic Impact Study - Maphisa/Moshoeshoe Corridor

Client Reference: Contract No.: C447

GladAfrica Reference: Project Number 127

Project Name: Integrated Public Transport Network (IPTN)

Report Heading: Phase 1 Trunk Route Traffic Assessment Report for the Integrated Transport Network Project, Mangaung Metropolitan Municipality,

Compiled by: Adrian Brislin Pr.Eng.	Signature:	Date: 20 Aug 2018
Reviewed by:Leon Van Genderen	Signature:	Date: 20 Aug 2018
Released by: Sarel Oberholser, Pr Eng.	Signature:	Date: 20 Aug 2018

I, Adrian Brislin Pr.Eng., author of this traffic Assessment report, hereby certify that I am a professional traffic engineer (Registration number: 980355) and that I have the required experience and training in the field of traffic and transportation engineering, as required by the Engineering Council of South Africa (ECSA), to compile this traffic report and I take full responsibility for the content, including all calculations, conclusions and recommendations made therein.

Signature: _____ Date: _____

Table of Contents

1	IN	TRC	DUCTION	1					
2	PU	JRP	OSE OF THE REPORT	1					
3	PH	IASI	ASE 1 IPTN TRUNK ROUTE CHARACTERISTICS AND OBSERVATIONS						
4	20	18 .	TRAFFIC MODELLING AND EVALUATION	4					
	4.1	Ν	Aodelling assumptions	4					
	4.2	F	Results of 2018 Traffic Evaluation	5					
	4.2	2.1	Moshoeshoe Section- Chief Moroko to Maphisa	5					
	4.2	2.2	Maphisa Section- Moshoeshoe to Mtyobile	5					
	4.2	2.3	Fort Hare Section- Mtyobile to Harvey/Rhodes	5					
5	PR	OP	OSED CHANGES TO 2018 ROUTE FOR IPTN OPERATIONS	16					
6	BU	JS S	TOPPING AND REFINEMENT OF STATION POSITIONS	20					
	6.1	E	Bus Stopping In Trafficked Lane	20					
	6.2	F	Refinement of Bus Station Positions	20					
	6.2	2.1	Station 030 (Power Station)	21					
	6.2	2.2	Station 022 (Batho Court)	21					
	6.2	2.3	Station 021 (Batho Clinic)	24					
	6.2	Station 020 (Botchabela)	25						
	6.2	2.5	Station 019	25					
	6.2	2.6	Station 018	26					
	6.2	2.7	Station 007	27					
	6.2	2.8	Station 006	28					
	6.2	2.9	Station 005 Bus/Minibus-taxi Transfer Facility	29					
	6.2	2.10) Stop 004 on Chief Moroko Crescent	33					
7	RA	TIC	NALIZATION OF ACCESS AND SPEED HUMPS/PEDESTRIAN CROSSINGS	34					
	7.1	F	ationalization of Access Along Trunk Route	34					
	7.2	S	peed Humps/Pedestrian Crossing Necessity Evaluation	36					
8	20	23	FUTURE TRAFFIC EVALUATION	38					
	8.1	Ν	Aodelling assumptions	38					
	8.2	F	Results of 2023 Future Traffic Evaluation with QB	39					
	8.2	2.1	Moshoeshoe Section- Chief Moroko to Maphisa	39					
	8.2	2.2	Maphisa Section- Moshoeshoe to Mtyobile	39					
	8.2	2.3	Fort Hare Section- Mtyobile to Harvey/Rhodes	39					
	8.3	Т	ravel Speeds Modelled and Achieved	40					
	8.3	3.1	Achieved Quality Bus speeds including stops	41					

9	CONCLUSIONS	42
10	RECOMMENDATIONS	43

List of Figures

Figure 1: Sectional layout of the Phase1 trunk route for the Quality Bus	2
Figure 2: Proposed upgrade of the Harvey and Rhodes Avenue intersection	. 17
Figure 3: Proposed upgrade of the Harvey Road and Fort Hare intersection	. 17
Figure 4: Two alternative proposed upgrades of the Fort Hare and Hamilton intersection (RHS preferred)	18
Figure 5: Proposed changes to the Maphisa/Moshoeshoe intersection	. 18
Figure 6: Proposed Transfer Facility for Station 005 and layout of the Moshoeshoe and Tsuene traffic sign	
Figure 7: Phase 1 Trunk Route and Station locations	21
Figure 8: High order station positioning of Station 022	. 22
Figure 9:Traffic Volumes & Pedestrian count input (Station 022)	. 22
Figure 10: Proposed change in Fort Hare Road cross-section to accommodate Station 022A and Station	
022B	23
Figure 11: Streetview photo of Station 022A location on west verge of Fort Hare Road and that of Station	i
022B on opposite side of the road	. 23
Figure 12: Refinement of Station 021 position opposite proposed road closures and in lane bus stopping	. 24
Figure 13: Streetview of existing road closures and proposed Station 021A and Station 021B respectively.	. 24
Figure 14: Refined position of Station 020 using the roadway for buses to stop	. 25
Figure 15: Streetview of proposed locations of Station 020A and 020B respectively where use needs to be	е
made of some of the existing bus laybys to accommodate the passenger waiting area	. 25
Figure 16:Station 019 should be located on either side of Jonga/Cemetery access intersection	. 26
Figure 17: Streetview northbound for station 019A and southbound for station 019B both north of and	
south of the Jonga intersection respectively	. 26
Figure 18: Station 018 with two directions placed on Moshoeshoe Street	. 27
Figure 19: Proposed location for Station 018A and 018B for the northbound and southbound respectively	/27
Figure 20: Proposed final position of Station 007 with buses stopping in the leftmost lane	. 28
Figure 21: Streetview of proposed Station locations for Station 007A and Station 007 B respectively	. 28
Figure 22: Outdated streetview photo with position of Station 006A and Station 006B respectively north	
and south of a new signalized midblock pedestrian pushbutton-controlled crossing	. 28
Figure 23: Proposed final location of Station 006 opposite the sport stadium to be placed north and south	of
a new midblock signal pushbutton-controlled pedestrian crossing.	29
Figure 24:Alternative 4 Concept with the use of separate Bus and Taxi facilities in close proximity	29
Figure 25: Concept layout of Alternative 4 along Moshoeshoe	30
Figure 26: Proposed Alternative 1 context layout of Transfer Station 005	. 31
Figure 27: Proposed Alternative 1 Layout of Bus/taxi transfer station	31
Figure 28: Alternative 2 proposal for transfer Station 005	. 32
Figure 29: Alternative 3 proposal for transfer Station 005	. 32
Figure 30: Proposed stops of Station004 to be placed around Chief Moroko Crescent at key pedestrian	
crossing locations	33
Figure 31: Location of existing pedestrian speed humps and signalised intersections	37
Figure 32: Extract from The MMM IPTN Operations plan for Phase 1 trunk route	. 38

List of Tables

Table 1: Level of Service (LoS) definitions for traffic evaluation.	4
Table 2:Description of Phase 1 route section with lane configuration and 2018 volume characteristics	. 20
Table 3: Fort Hare Road section- Proposed access management proposals, 12 LILOS	. 34
Table 4: Maphisa Road section, proposed access management proposals; 6 current LILO's	. 35
Table 5: Moshoeshoe Street access management proposals; 1 road closure and 2 LILOs	. 35
Table 6: Results of speed hump/pedestrian crossing analysis	. 36
Table 7: Existing (2018) model travel speed results for all traffic	. 40
Table 8: Travel speed results for upgraded network for mixed traffic along Phase 1 trunk route	. 40

Annexures

- Annexure A 2018 Phase 1 Corridor Traffic volumes
- Annexure B Results of 2018 Existing Traffic Evaluation
- Annexure C Depiction of position of proposed Road Closures and LILO access changes
- Annexure D Results of 2023 Future Traffic Evaluation

Nomenclature

- CBD Central Business District
- IPTN Integrated Public Transport Network
- MMM Mangaung Metropolitan Municipality
- NMT Non-Motorised Transport
- V/C Volume / Capacity Ratio
- LoS Level of Service
- QB Quality Bus
- UA Universal Access

1 INTRODUCTION

This report only looks at the Phase 1A section up to the Harvey and Rhodes Avenue as the section closer to the Central Business District and the Intermodal Facility will be modelled and assessed under the O.R. Tambo Route. The O.R Tambo bus route will be the next implementable section of the IPTN.

We have also only looked at a 5 year traffic horizon in our evaluation, since the purpose was to evaluate the initial Quality Bus operation which is to operate in early 2019. The route had to be evaluated with initial minimum requirement bus stations so that no immediate land acquisition would be necessary for construction to proceed. However, the 10 year horizon bus volumes (30 buses per hour) have been used and integrated with the 2023 traffic. Also, after 5 years the feeder services for both Phase 1A and Phase 2(Route via Dr Belcher Road) will also be in operation, which will change the traffic distribution of both private and public transport.

Furthermore, the Waaihoek Bridge Option is highly unlikely to materialize in the next 5 years, this being another reason to only model as far north as the Rhodes Avenue intersection along Harvey Road.

2 PURPOSE OF THE REPORT

The purpose of this Traffic Assessment report following the "*Phase 1a and 1b Status Quo Traffic Assessment*" and reports, is to provide more detail on the actual traffic modelling of the key route sections, with recommendations regarding access management, the speed humps/pedestrian crossings along the route and the refinement of station positions given the road network characteristics.

This Traffic Assessment report consists of the following:

- 1) Model the existing Phase 1 route conditions
- 2) Identify current route bottlenecks and how these should be upgraded
- 3) Determine for which bus stations the bus can stop in the route roadway, as the final station requirements need land acquisition, but the bus operations should commence as quickly as possible
- 4) Refine the final station positions based on surrounding land-use and road network characteristics
- 5) Optimize the route access requirements and remove unnecessary speed humps/pedestrian crossings currently in place
- 6) Model the future traffic conditions with the Quality Bus (QB) stopping and intersection upgrades in order to verify future traffic operating conditions
- 7) Summarize the forecast traffic operations and achieved bus and mixed traffic speeds
- 8) Make final route upgrading recommendations

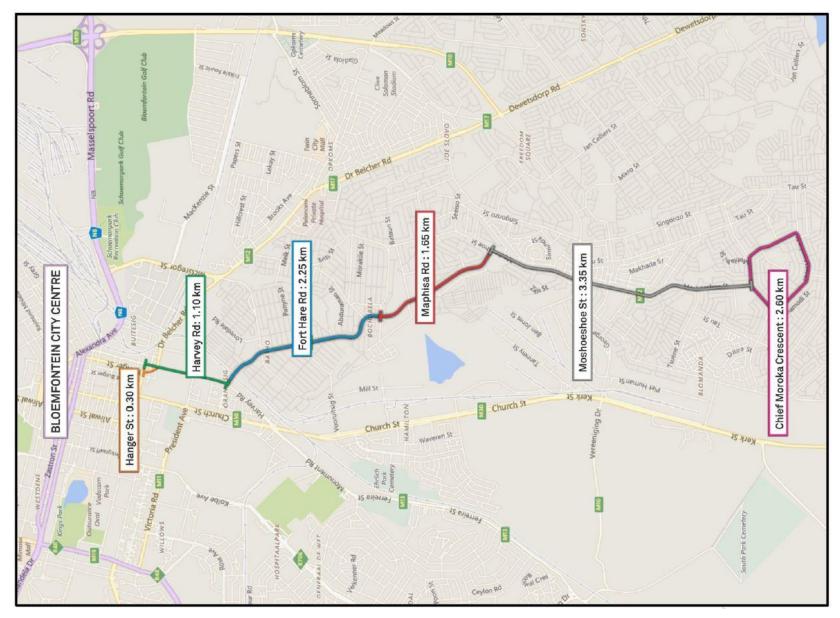
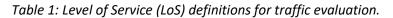


Figure 1: Sectional layout of the Phase1 trunk route for the Quality Bus

3 PHASE 1 IPTN TRUNK ROUTE CHARACTERISTICS AND OBSERVATIONS

The Phase 1 trunk route has some distinct sections with homogenous road cross-section and traffic operating conditions. These are shown in Figure 1 below and can be described as follows from south to north:

- Chief Moroko Crescent ring road which will be the clockwise turnaround loop (2,6km long and a single lane per direction with several speed humps and surrounded by residential areas and schools)
- Moshoeshoe Street from Chief Moroko to Maphisa Road intersection (3,35km long with 2 lanes per direction with either painted or curbed median island) This is construction Phase1c.
- Maphisa Road from Moshoeshoe Street to Mtyobile Street (1,65km long in total with three lanes per direction and curbed median island from Moshoeshoe to Maibamolotsha and 2 lanes per direction from Maibamolotsha to Mtyobile.) This is construction Phase1a
- Fort Hare Road from Mtyobile Street to Harvey Road (2,25 km long with 2 lanes per direction separated mainly by a painted median) This is construction Phase1b.
- Harvey Road from Fort Hare Road to Fort Street (800m long with 2 lanes per direction with a curbed median)
- Hanger Street from Fort Street to proposed intermodal transfer facility (300m long as a 3-lane oneway urban street)
- Reverse direction via Harvey Street directly to Fort Street intersection (300m long as a 3-lane oneway urban street)


The traffic counts used for the assessment comprised 2016, 2017 and 2018 intersection turning counts, which were all brought up to date to 2018 values. The diagrammatic volumes are depicted in **Annexure A**

4 2018 TRAFFIC MODELLING AND EVALUATION

The Level of Service (LoS) depends on the traffic delays at the intersection, either due to low capacity on the approaches, or due to inadequate signal timings for signalized intersections. LoS A represents the best operating conditions with minor or no delays while LoS F represents the worst operating condition with serious delays. Delays of less than 55, 50 and 35 seconds for signalized, roundabout and stop sign control intersection respectively are deemed acceptable as it is not lower than LoS D. The delay criterion for LoS is shown in Table 1.

Level of Service	Control delay per vehicle in seconds (d)					
	Signals	Roundabout	Stop Sign Control			
Α	$d \le 10$	$d \le 10$	d ≤ 10			
В	$10 < d \le 20$	$10 < d \le 20$	$10 < d \le 15$			
С	$20 < d \le 35$	$20 < d \le 35$	$15 < d \le 25$			
D	$35 < d \le 55$	$35 < d \le 50$	$25 < d \le 35$			
E	$55 < d \le 80$	$55 < d \le 70$	$35 < d \le 50$			
F	80 < d	70 < d	50 < d			

4.1 MODELLING ASSUMPTIONS

- 1) The future traffic growth on the corridor will be taken up by an increase in Quality Bus patronage. However, the future model has effectively assumed a 2.5% p.a. growth rate for 5 years
- 2) The posted speed limit of the trunk route is 60 km/h except the Chief Moroko Crescent which is traffic calmed with a recommended speed of 40 km/h. This loop was not modelled.
- 3) The TRANSYT model was broken up into separate sections coinciding with the construction sub-phase designation of c, a or b travelling from south to north. The current signal timings were used for the existing analysis. Only the key intersections have been modelled.
- 4) The Fort Hare section was modelled to include up to the Harvey Road and Rhodes Avenue intersection.
- 5) It was not deemed necessary to model the Central Business District (CBD) section between the Rhodes Ave intersection and the Intermodal interchange as there are very few significant improvements that could be made. This section was nevertheless observed for its travel time during the peaks.
- 6) It was also deemed unnecessary to model the Chief Moroko Crescent as this is essentially a residential street with stop controls and speed hump/pedestrian crossings making it a traffic calming zone. This characteristic should nevertheless be maintained and therefore only travel times were observed.

4.2 RESULTS OF 2018 TRAFFIC EVALUATION

The detailed TRANSYT output of evaluation results is shown in **Annexure B.** These results have been summarized below and have been shown diagrammatically on the next pages.

4.2.1 Moshoeshoe Section- Chief Moroko to Maphisa

All intersections are operating at Level of Service (LoS) A and LoS B, with the odd stop control intersection operating at LoS C on the side road. An exception is the 3-way stop at Mamani, for which the poor LoS is for the main road traffic along Moshoeshoe. It was observed that very few motorists actually stop on Moshoeshoe, which is very dangerous for crossing pedestrians and the side road traffic.

The average speed for this section of the modelled network is 34 km/h for existing traffic conditions

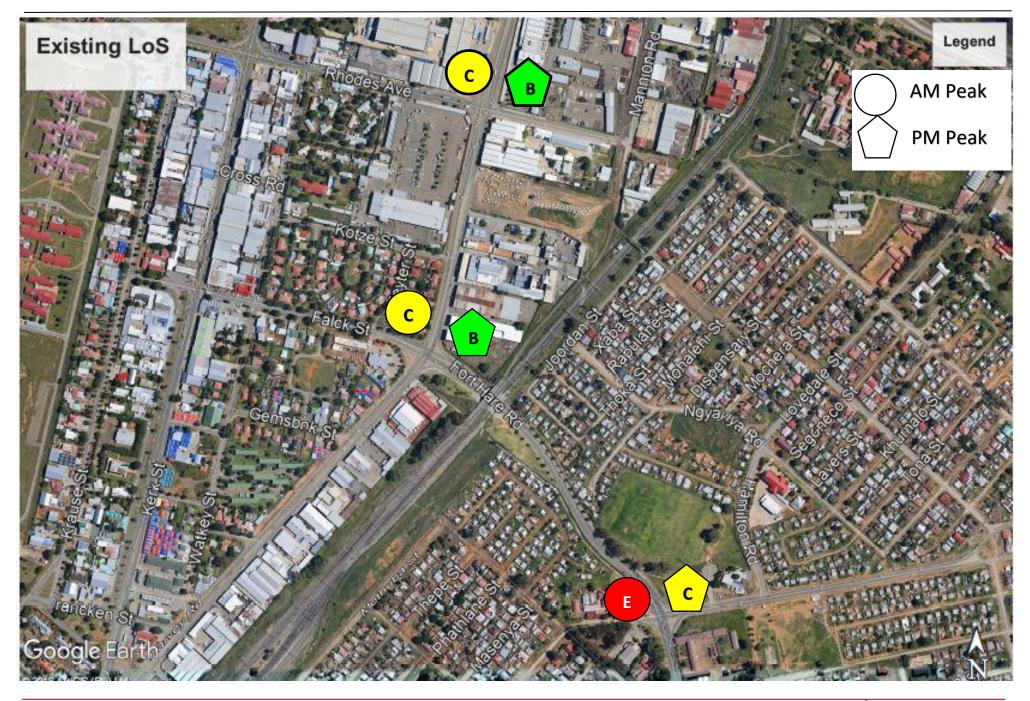
4.2.2 Maphisa Section- Moshoeshoe to Mtyobile

All intersections are operating at LoS A and LoS B, with the odd stop control intersection operating at LoS C on the side road. The exception to this is the 2-way stop control at the Mtyobile intersection itself and the Maibamolotsha 3-way stop control, for which the critical approach operates at LoS F during the AM peak and LoS D during the PM peak. Notable also at this 3-way stop was that many motorists did not actually stop as is legally required.

The average speed for this section of the modelled network is 37 km/h for existing traffic conditions

4.2.3 Fort Hare Section- Mtyobile to Harvey/Rhodes

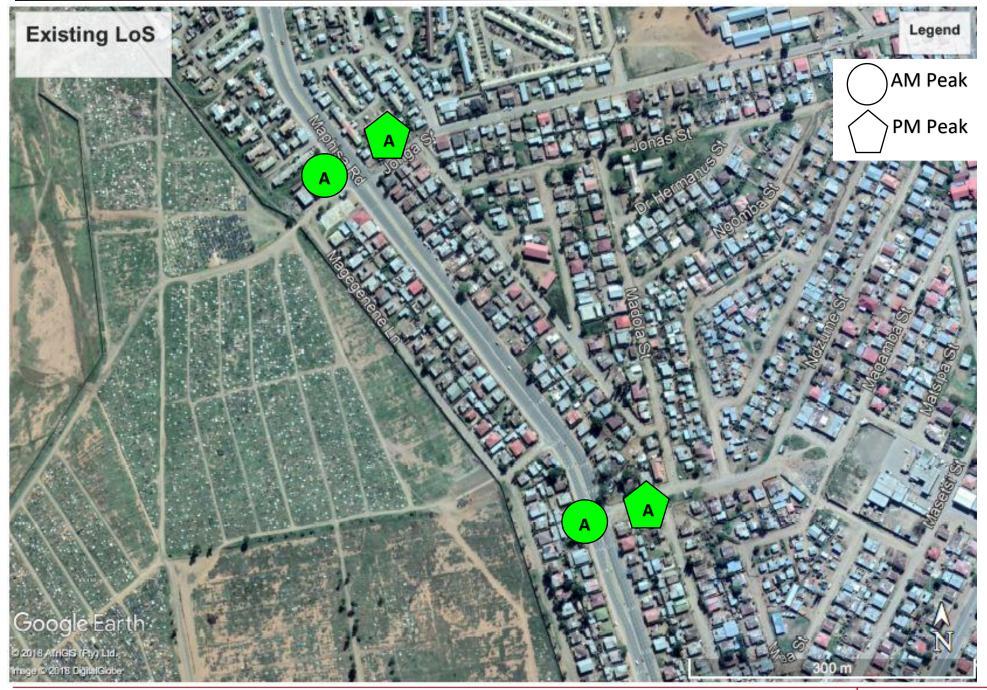
At the Fort Hare/Hamilton intersection during the morning (AM) peak the east approach right-turn and south approach through movement is presently operating at LoS F.

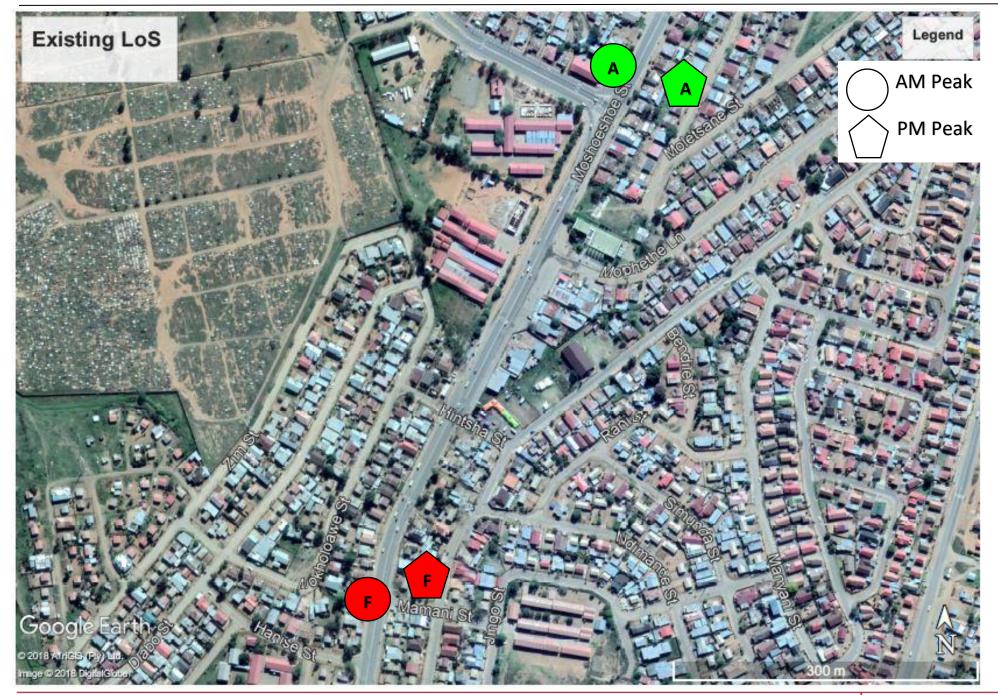

At the Fort Hare and Harvey intersection during the AM peak and afternoon (PM) peak the right-turn movement from the south is operating at LoS E/F.

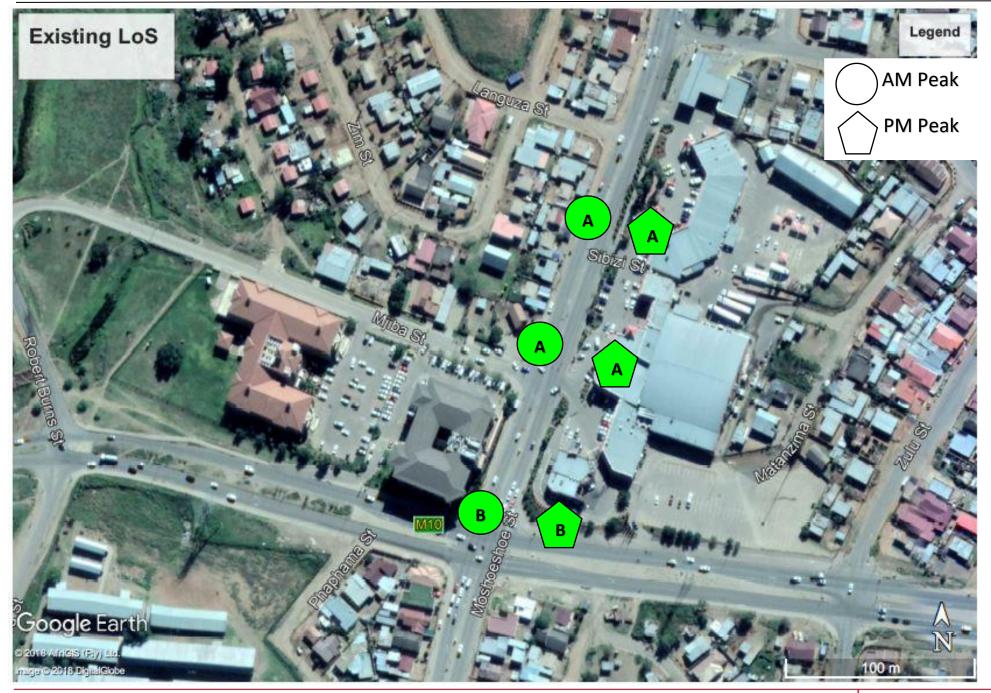
At the Harvey /Rhodes intersection during the AM peak the right-turn movement and the straight-left movement from the west is operating at LoS E/F.

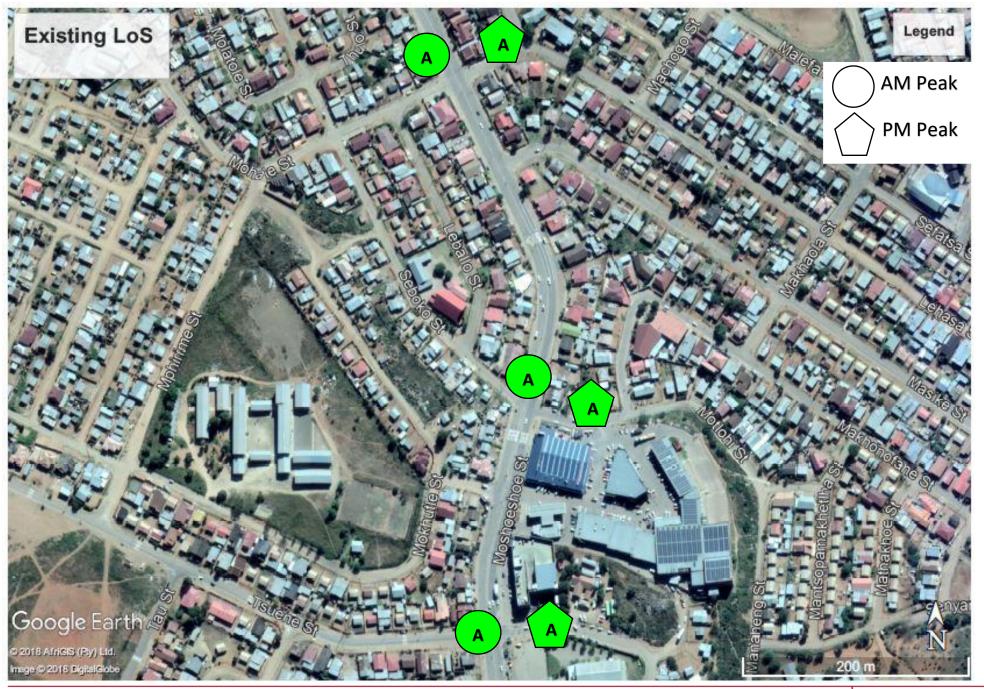
The average speed for this section of the modelled network is 19 km/h for the AM peak existing traffic conditions.

The results of the overall intersection LoS are shown in the following 10 diagrams.









5 PROPOSED CHANGES TO 2018 ROUTE FOR IPTN OPERATIONS

The following intersection upgrades which are deemed necessary for the future satisfactory Phase 1 Trunk Route traffic operations based on the existing evaluation above are listed below:

- a) Intersection of Harvey Road and Rhodes Avenue- maintain existing slip lanes, but introduce a dual N-S right-turn phase on Harvey Road for all times of the day
- b) Intersection of Harvey Road and Fort Hare Road- extend the south approach right-turn from 60m to at least 100m in length. Provide a short 4th signal phase for traffic from the south during the PM peak. Repaint the east approach two right-turn lanes.
- c) Intersection of Fort Hare Road and Hamilton Road- remove the left slip lane from the south-west corner and replace with a 40m long exclusive left turn. Add an additional short right-turn lane from the east approach to cater for this high turn movement.
- d) The 3-way stop at Maphisa and Maibamolotsha should be converted to stop control on the side road. The right turn lane and left slip lane on Maibamolotsha is to be retained. Although tested this intersection does not warrant signalization.
- e) The right-turn lane from the north at the Moshoeshoe/Maphisa intersection and the one from the south at the Moshoeshoe/Tsuene intersection, should be converted to a single exclusive right-turn lane for better traffic operations.
- f) Signals are warranted and should be implemented at the intersection of:
 - Maphisa and Mtyobile
 - Moshoeshoe and Mamani
 - Moshoeshoe and Tsuene (to facilitate a bus /taxi transfer facility- Station 005)

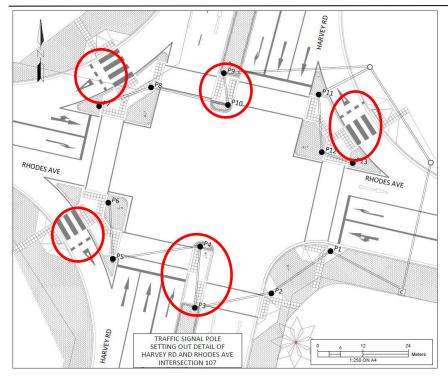


Figure 2: Proposed upgrade of the Harvey and Rhodes Avenue intersection

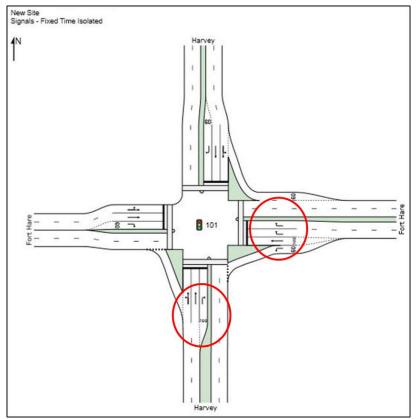


Figure 3: Proposed upgrade of the Harvey Road and Fort Hare intersection

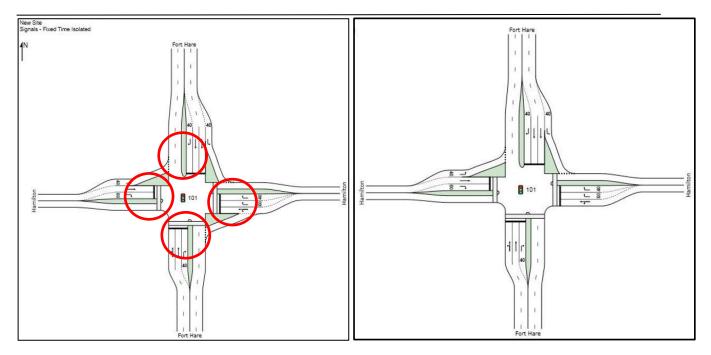


Figure 4: Two alternative proposed upgrades of the Fort Hare and Hamilton intersection (RHS preferred)

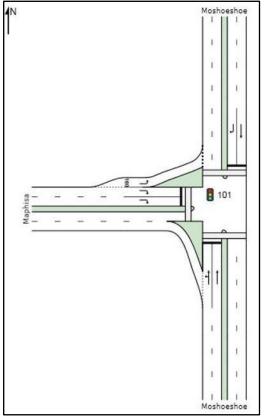


Figure 5: Proposed changes to the Maphisa/Moshoeshoe intersection

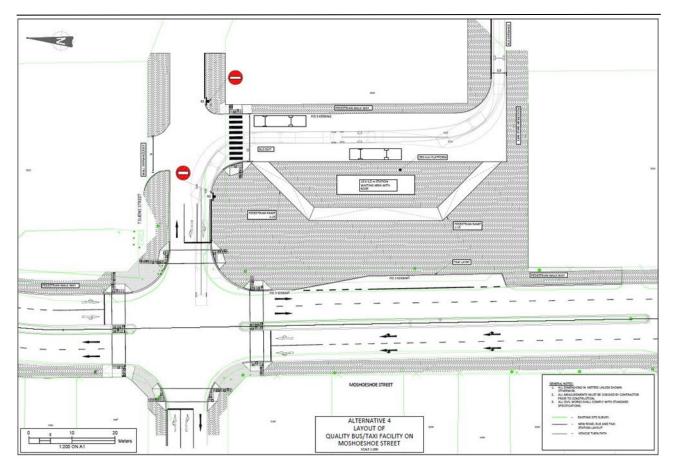


Figure 6: Proposed Transfer Facility for Station 005 and layout of the Moshoeshoe and Tsuene traffic signal

6 BUS STOPPING AND REFINEMENT OF STATION POSITIONS

6.1 BUS STOPPING IN TRAFFICKED LANE

It has been conservatively assumed that the single lane capacity is 1000 to 1100 vehicles per hour per lane (vph/lane) so that when the bus stops in the leftmost lane, then all traffic other mixed traffic can pass on the adjacent lane.

The section of Fort Hare southbound from Hamilton to Mtyobile is close e to 1000vph in the peak and therefore, the bus can stop in the lane. This is the same for the northbound and southbound directions for the whole of the Maphisa section with 2 lanes per direction. The peak volume of 1300vph on the section of Moshoeshoe Street northbound between the M10 and Maphisa is only this high during the AM peak, but a layby is nevertheless required for any stations in this section. The link volumes can be confirmed in the diagrams located in **Annexure A**. The key sections and characteristics have been summarized in Table 2.

				Highest Peak	Highest Peak	Station Treatment for	Station Treatment for	Free Flow	Peak Operating	
Lanes/dir	Main Road	Cross 1	Cross 2	Volume (vph) NB	Volume (vph) SB	Bus stopping NB	Bus stopping SB	Speed Limit	Speed (km/h)	Distance
2	Harvey	Fort Hare	St Andrews		1350	Must be layby	Must be layby	60km/h	20	1,4
2	Fort Hare	Mtyobile	Harvey	1175	1090	Must be layby	Must be layby	60km/h	20	2,25
		-				Can stop in	Can stop in left			
2	Maphisa	Ndzume	Mtyobile	1050	560	left lane	lane	60km/h	37	
						Can stop in	Can stop in left			
3	Maphisa	Moshoeshoe	Ndzume	830	480	left lane	lane	60km/h	37	1,65
							Can stop in left			
2	Moshoeshoe	M10	Maphisa	1275	960	Must be layby	lane	50km/h	34	
						Can stop in	Can stop in left			
2	Moshoeshoe	Chief Moroka	M10	925	800	left lane	lane	50km/h	34	3,65
						Can stop in	Can stop in left			
1	Chief Moroka			600	600	left lane	lane	40km/h	25	2,6

Table 2:Description of Phase 1 route section with lane configuration and 2018 volume characteristics

6.2 REFINEMENT OF BUS STATION POSITIONS

The latest operation plan for the IPTN services has determined the passenger demand for the Phase 1 Trunk Route and this has been simplified to a peak future passenger demand of 400 passengers per hour per station. The approximate position of the stations has been determined by considering the surrounding landuse (schools, municipal services, residential or retail) as well as the minibus-taxi stopping activity in the same particular area.

Now that it has been determined at which stations the bus can stop in the leftmost lane of the roadway, this exercise was only a refinement of the station position.

A map of the Phase 1 Trunk Route with station positions and allocated numbers is shown in Figure 7 below.

In the details following the A station designation refers to the northbound direction station and the B designation refers to the southbound station direction.

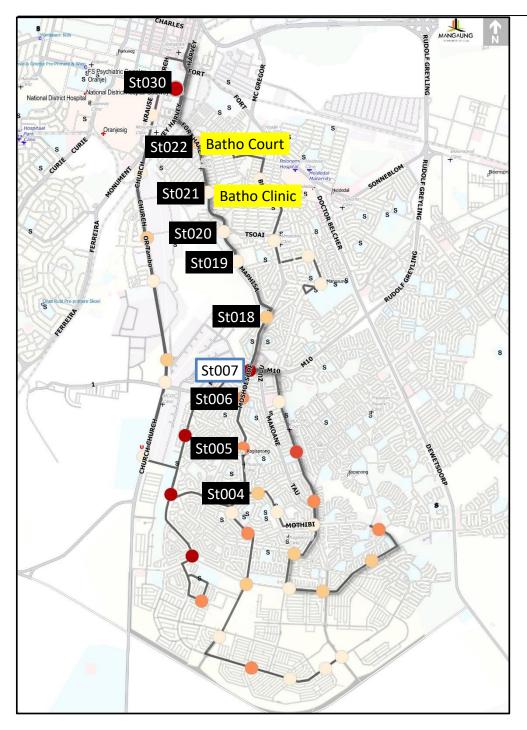


Figure 7: Phase 1 Trunk Route and Station locations

6.2.1 Station 030 (Power Station)

Station 030 (Power Station)- requires land acquisition and therefore cannot be implemented now or very soon.

6.2.2 Station 022 (Batho Court)

Station 022 (Batho Court)- near Hamilton intersection- the bus can stop in leftmost southbound lane, but a layby should be constructed on the western side walkway.

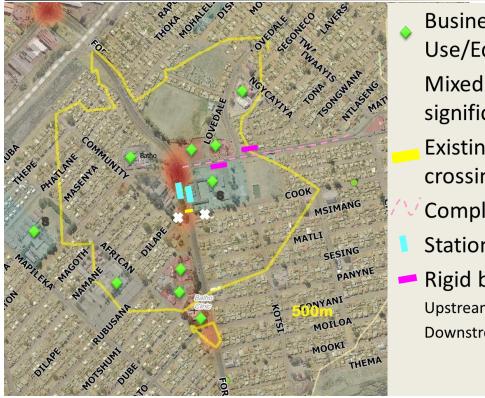


Figure 8: High order station positioning of Station 022

- Business Use/Education/other
 - Mixed use area, significant residential
- Existing pedestrian crossing
- Complementary route Station
- Rigid bus/taxi lay-by
 Upstream Station 1,000m
 Downstream station 650m

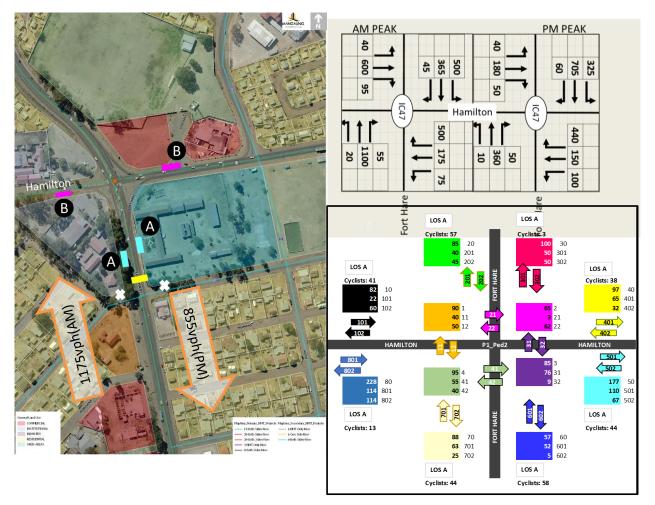


Figure 9:Traffic Volumes & Pedestrian count input (Station 022)

The peak pedestrian volumes shown in Figure 9 can be summarized as follows:

- Movement 41 &42 (across south side of Fort Hare) = 380 pedestrians per hour
- Movement 11&12 (across Hamilton on west side) = 360 pedestrians per hour
- Movement 21 &22 (across Fort hare north side) =260 pedestrians per hour
- Movement 31&32 (across Hamilton on east side) = 340 pedestrians per hour

It has been proposed to cater for 3 pedestrian movements on all except the northern side. This means that the south crossing of Fort Hare could be as much as 640 pedestrians per hour. In such a case the west and east crossing of Hamilton Road could well be reduced significantly. An area of 5m² is the minimum area required to accommodate the waiting pedestrians per cycle on either the median island or slip lane traffic island to achieve no worse than LoS D.

The peak traffic volumes indicate that the south-west slip lane is not justified at all and it is proposed to remove it. This has also been proposed since the south-west corner is the busiest from a pedestrian viewpoint. The peak volumes also indicate that the south-east located slip lane is not really justified either as the traffic evaluation of removing both southern slip lanes still provides a satisfactory level of service for the intersection.

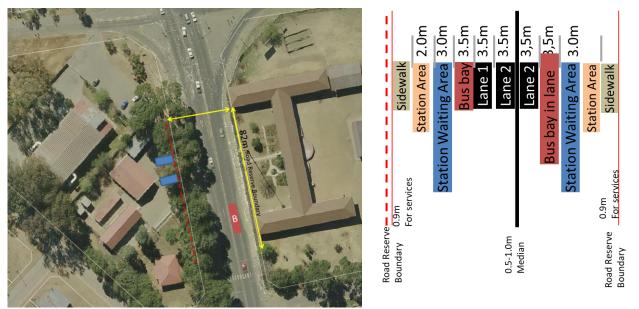


Figure 10: Proposed change in Fort Hare Road cross-section to accommodate Station 022A and Station 022B

Figure 11: Streetview photo of Station 022A location on west verge of Fort Hare Road and that of Station 022B on opposite side of the road

6.2.3 Station 021 (Batho Clinic)

Station 021 (Batho Clinic)- should be located at the existing road closures of Mahabane Street (West) and Mooki Street (East) with the waiting area located within the closed street roadway and the bus can stop in the leftmost lane for both directions. There are already long bus laybys at these locations already.

Figure 12: Refinement of Station 021 position opposite proposed road closures and in lane bus stopping

Figure 13: Street-view of existing road closures and proposed Station 021A and Station 021B respectively

6.2.4 Station 020 (Botchabela)

Station 020- there is sufficient road reserve width on the west side for a layby to be constructed and the bus could stop in the leftmost lane on the eastern side opposite the existing road closure of Kabane Street. The waiting area could be located within the closed street roadway. (See Figure 14 and 15)

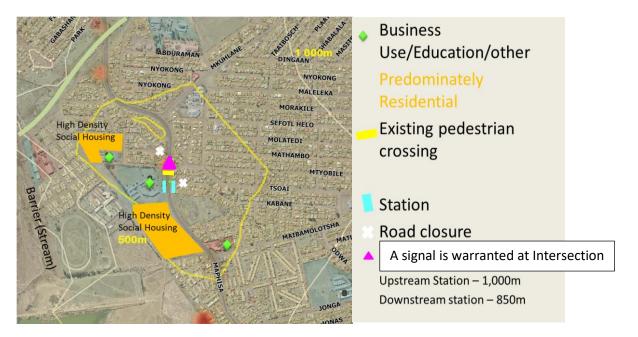


Figure 14: Refined position of Station 020 using the roadway for buses to stop

Figure 15: Streetview of proposed locations of Station 020A and 020B respectively where use needs to be made of some of the existing bus laybys to accommodate the passenger waiting area.

6.2.5 Station 019

Station 019- the intersection of Jonga Street is very important as the main access to the cemetery. The two direction stations should be placed on either side of this intersection on Maphisa Road. This means north of the Cemetery access on the west and south of Jonga Street on the east side. (see Figure 16 and 17)

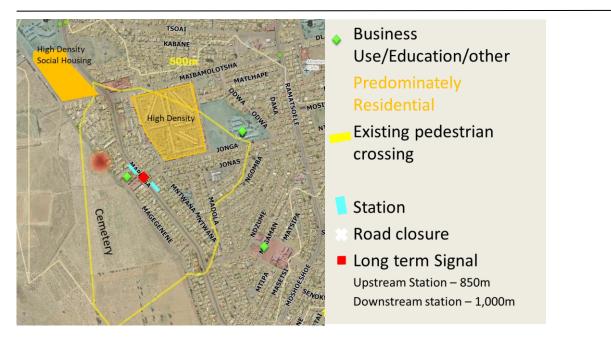


Figure 16:Station 019 should be located on either side of Jonga/Cemetery access intersection

Figure 17: Streetview northbound for station 019A and southbound for station 019B both north of and south of the Jonga intersection respectively

The Jonga/Maphisa intersection signalization is not yet warranted, but this may be considered for a funeral peak or needs to be monitored for possible re-evaluation after a couple of years.

6.2.6 Station 018

Station 018- for the northbound station, the bus can stop in the third leftmost lane near the school entrance on Maphisa Road. A site visit has however determined that the sidewalk is currently raised by 0,6 m already and is only approximately 2m wide. This effectively leaves no space for waiting passengers. It is therefore proposed that Station 018A be placed at an alternative position opposite the location of Station 018B. The southbound station should be located on Moshoeshoe Street opposite the vacant corner in front of the Library, although the bus can comfortably stop in the leftmost of the 2 lanes. The final station location is shown in Figure 18 and 19.

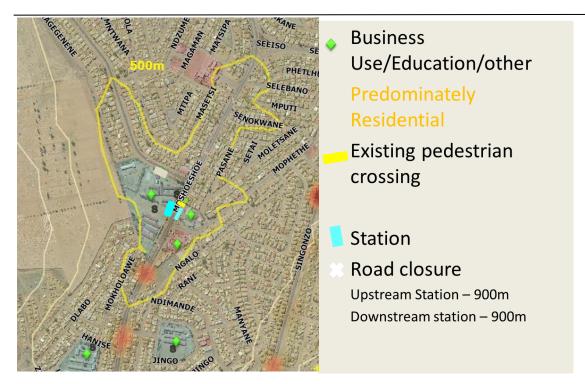


Figure 18: Station 018 with two directions placed on Moshoeshoe Street

Station 007 –since the peak traffic volume southbound allows for the bus to stop in the lane, the waiting area needs to be placed in the shopping centre landscaped area (see Figure 20). It is perceived that the landscaping has actually been constructed within the road reserve. For the northbound station it was at first proposed to close the extension of Piet Human Street for the northbound station. However, a closer physical site inspection has revealed that this will not be possible because Piet Human becomes a one-way west at its western end and passes over a bridge which can only carry less than 5 tons.

This effectively means that this road cannot be closed at its eastern intersection with Moshoeshoe Street. If we assume that the bus can use the street to stop in we can, however, still accommodate the waiting area and sidewalk on the north-west corner for the northbound station since it is presently an open publicly used wide corner.

Since the peak AM peak volume is 1100vph, allowing the bus to stop in Moshoeshoe Street is considered to be acceptable.

The final position of Station 007 is shown in Figure 19 and 20 below.

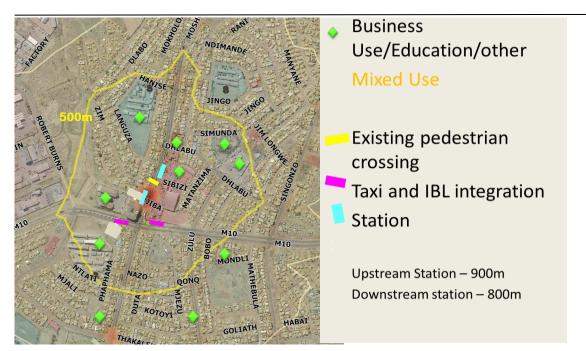
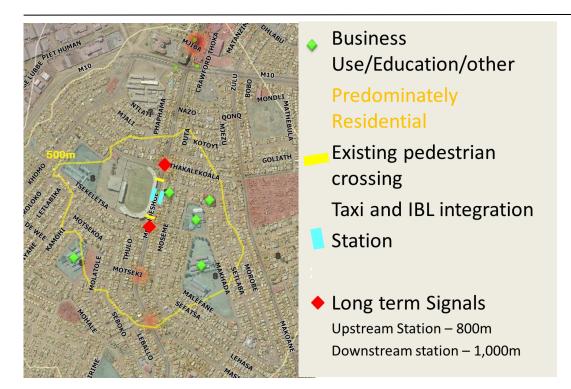


Figure 20: Proposed final position of Station 007 with buses stopping in the leftmost lane

Figure 21: Streetview of proposed Station locations for Station 007A and Station 007 B respectively


6.2.8 Station 006

Station 006- since the peak volumes are reasonably low, the bus can stop in Moshoeshoe in both directions and it was pertinent to place the two stations on either side of a midblock signalized (push-button controlled) pedestrian crossing. This will replace the current two speed humps /crossings on this stadium section. (see Figure 22).

Figure 22: Outdated street-view photo with position of Station 006A and Station 006B respectively north and south of a new signalized midblock pedestrian pushbutton-controlled crossing

Figure 23:Proposed final location of Station 006 opposite the sport stadium to be placed north and south of a new midblock signal pushbutton-controlled pedestrian crossing.

6.2.9 Station 005 Bus/Minibus-taxi Transfer Facility

Station 005 - since this will be a transfer station it was deemed necessary to explore alternatives for this station. Four alternatives were evaluated and it was decided that Alternative 4 best fitted the requirements that needed to be accommodated, with a traffic signal at Moshoeshoe/Tsuene, without the need for a U-Turn at the Tsuene/Moshoeshoe intersection. (as per Alternative 1)

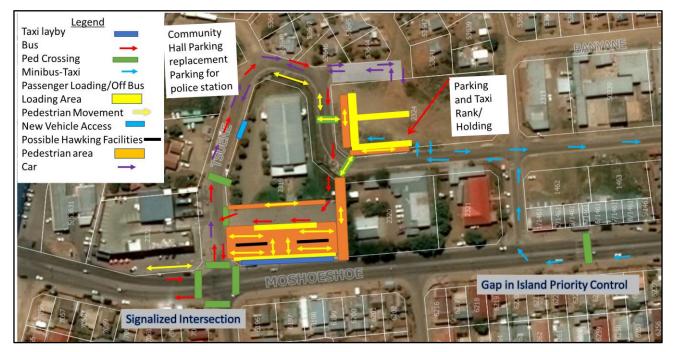


Figure 24:Alternative 4 Concept with the use of separate Bus and Taxi facilities in close proximity

The key element was to use the off-street land parcel available for the Bus Station and significant pedestrian area. The minibus-taxi feeder drop-off and pickup is separate from the bus station. The area as indicated would be designed for taxi ranking/holding and overflow Municipal Hall/shopping centre parking. For the southbound minibus-taxi movement a layby facility has been provided. It has therefore been arranged so that the passengers share a transfer/waiting location. The traffic signal at the Tsuene intersection is to allow the buses and other traffic to enter the Moshoeshoe traffic timeously. This signal will therefore also create gaps in the traffic for the minibus-taxis to turn right into the unnamed side street depicted with blue arrows.

Unfortunately, an opportunity to create a pedestrian link under the trees (yellow pathway) from the shopping centre to the bus/taxi transfer station cannot be executed since this pathway now falls within the Police station property and is completely fenced off. A yield controlled midblock pedestrian crossing will nevertheless need to be provided to cater for this pedestrian demand across Tsuene Street opposite the Police station.

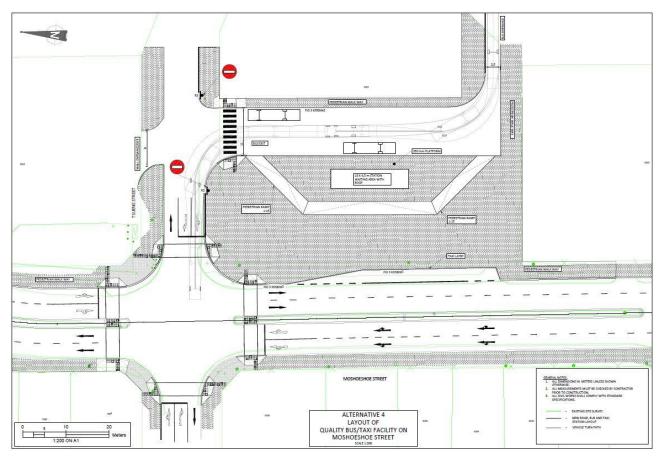


Figure 25: Concept layout of Alternative 4 along Moshoeshoe.

It should be noted that 4 Alternatives were considered, but the above describes Alternative 4 which was chosen as the recommended option.

Alternative 1

Alternative 1 proposes to place the southbound station off-street in an open paved property on the southeast side of the Moshoeshoe/Tsuene intersection. A plan has therefore been made to signalize this intersection to create a safe U-turn opportunity for the minibus-taxis (by the introduction of a northbound only signal phase with protected flashing green right-turn phase) to dock at one side of the transfer station. The concept layout plan of the Alternative 1 proposal is shown below. Unfortunately, the U-Turn was seen as a safety disadvantage of the Alternative.

Figure 26: Proposed Alternative 1 context layout of Transfer Station 005

The detailed concept layout is shown in Figure 25. It must be clarified that the minibus-taxis will not reverse into Moshoeshoe Street and will only be having to yield to the other bypassing minibus-taxis.

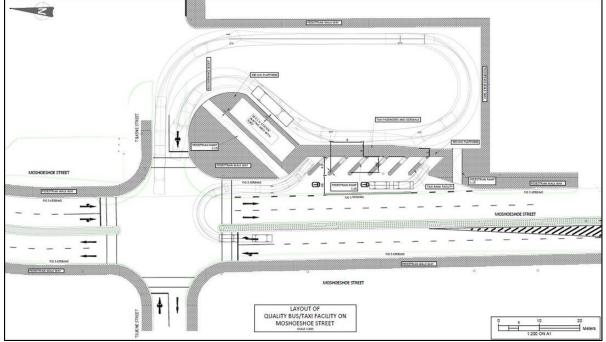


Figure 27: Proposed Alternative 1 Layout of Bus/taxi transfer station

Alternative 2



Figure 28: Alternative 2 proposal for transfer Station 005

This alternative unfortunately has a passenger transfer disjoint (50m displacement) between the Quality Bus service on Moshoeshoe Street and the taxi stop on Zim Street. Therefore, the facility is not perceived as a single unit station facility and therefore ranks lower than Alternative 1.

Alternative 3

Figure 29: Alternative 3 proposal for transfer Station 005

This proposal would be preferred over Alternative 2, if any element of Alternative 4 cannot be accommodated. It is a good alternative since the minibus-taxi and bus operations are separated. This Alternative was further developed into Alternative 4, which accommodates the best elements of Alternative 1 and Alternative 3, with the most recent implementable assumption, whereby the bus can enter the paved bus loading area from the east through the property which is adjacent to the Municipal Hall. This property houses an air quality metering station which is entirely feasible to move to the corner of the Municipal Hall site.

With regards to Station 005A northbound, it has been proposed to close the unknown street between Moshoeshoe Street and Zim Street (see Figure 24 above), however for the first phase of the trunk route implementation, since Station 005B is the route endpoint and turn-around, a northbound station is strictly not necessary. This would however enhance the long-term operation when Station 004 along Chief Moroko Crescent is implemented.

6.2.10 Stop 004 on Chief Moroko Crescent

Station 004- since the concept is for the bus to turn around on the route via the Chief Moroko Crescent circular roadway and volumes are very low, it is proposed that 3 stops be placed alongside the roadway at strategic pedestrian crossing positions and then just stop in the roadway whilst passengers board or alight.

 Predominately Business Use/Education/other
 Mixed Use
 Existing pedestrian crossing
 Taxi and IBL integration
 Station

Upstream Station – 1,000m Downstream station – 400m Downstream station – 1390m Downstream station – 1370m

Figure 30: Proposed stops of Station004 to be placed around Chief Moroko Crescent at key pedestrian crossing locations

7 RATIONALIZATION OF ACCESS AND SPEED HUMPS/PEDESTRIAN CROSSINGS

7.1 RATIONALIZATION OF ACCESS ALONG TRUNK ROUTE

The primary objective of this access rationalization exercise was to raise the hierarchy of this Class 4b route to be more appropriate as a trunk bus route, yet nevertheless, to attempt to maintain the local township nature of the surrounding area and the access to it. This has been achieved by replacing full access local side road intersections with left-in-left-out (LILO) access, which at least removes all right-turn movements at these locations so that the median can be closed at these selected points. In many cases the current road cross-section with a painted median or median island effectively creates LILO accesses already. It is understood that the introduction of LILO access might promote the need to perform a U-turn movement, rather than deviate within the residential area. This was considered and a safe design which facilitates an exclusive right turn lane in addition to the two through lanes has been proposed at such potential locations. Again, there are already such LILO locations which will be retained.

One road closure is proposed. This closure and the existing closures are mainly to best accommodate the stations and might be located too close to major key intersections. The location of the proposed closures and proposed left-in-left-out (LILO) accesses are shown in the tables below. The objective was to remove some of the many median gaps and right-turn movements across the trunk route.

Phase		Intersection	Status	Distance to the next junction before LILO/ closure	Distance to the next junction after LILO/closure
	1	Hamilton Street	Access	148	468
	2	Cook Street	LILO 1	62	
	3	Msimanga Street	LILO 2	39	
	4	Rubusana Street	LILO 3	30	
	5	Matli Street	LILO 4	62	
	6	Sesing Street	LILO 5 Already	64	
	7	Panyane Street	LILO 6 Already	63	
	8	Gonyane Street	Access	193	193
g	9	Mahabane Street	Closed Already		-
1B Fort Hare Road	10	Mooki Street	Closed Already		-
ē	11	Makohliso Street	Access	24	117
Ha	12	Fenyane Street	LILO 7	34	
L L	13	Molokoane Street	LILO 8	59	
E E	14	Unknown	Access	48	48
7	15	Maphikela	Access	25	102
	16	Parkplein Street	LILO 9	27	
	17	Thema	LILO 10	50	
	18	Park Street	Access	176	176
	19	Unknown	Access	305	305
	20	Mkuhlane Street	Access	108	511
	21	Unknown	LILO 11 Already	70	
	22	Unknown	LILO 12 Already	333	
	23	Mtyobile Street	Access	430	430

Table 3: Fort Hare Road section- Proposed access management proposals, 12 LILOS

Phase		Intersection	Status	Distance to the next junction before LILO/ closure	Distance to the next junction after LILO/closure
	24	Kabane Street	Closed Already		-
	25	Maibamolotsha Street	Access	24	359
-	26	Unknown	LILO 13 Already	57	
Road	27	Unknown	LILO 14 Already	101	
	28	Unknown	LILO 15 Already	37	
lis	29	Unknown	LILO 16 Already	75	
Maphisa	30	Unknown	LILO 17 Already	65	
		Jonga Street	Access	343	439
1A-	32	Unknown	LILO 18 Already	96	
	33	Ndzume Street	Access	255	255
	34	Unknown	Access	200	200
	35	Moshoeshoe	Access	154	154

Table 4: Maphisa Road section, proposed access management proposals; 6 current LILO's

Phase		Intersection	Status	Distance to the next junction before LILO/ closure	Distance to the next junction after LILO/closure
	36	Mophetho Lane	Access	185	185
	37	Hintsha Street	Access	207	207
	38	Mamani Street	Access	60	60
	39	Hanise Street	Access	205	205
	40	Dhlabu Street	Access	59	59
	41	Languza Street	Access	64	64
	42	Access to shopping	Access	74	74
	43	Mjiba Street	Access	95	95
eet	44	M10	Access	174	174
1C Moshoeshoe Street	45	Nazo Street	Access	175	232
e	46	Mjevu Street	LILO 19	57	
she	47	Thakalekoala Street	Access	240	240
) oe	48	Tsekeletsa Street	Access	215	215
lso	49	Motseki Street	Access	201	201
Σ	50	Mohale Street	Access	80	80
10	51	Masike Street	Access	216	216
	52	Motlohi Street	Access	75	196
	53	Unknown	Closed 1	121	-
	54	Tsuene Street	Access	120	120
	55	Toolo Street	Access	62	62
	56	Unknown	Access	160	265
	57	Tsuene2 Street	LILO 20	105	
	58	Tlhapane Street	Access	225	225
	59	Chief Moroka Crescent	Access		

Table 5: Moshoeshoe Street access management proposals; 1 road closure and 2 LILOs

Only one (1,8%) access road has been proposed to be closed to vehicular traffic. The number of LILOs already in place or proposed to be implemented is 20 (35%). The effective spacing between right turn opportunities across the median changes from 126m to 193m. This is not considered overly intrusive but bus stations have been facilitated at the road closures and right-turn movements (gaps in the curbed/painted island), some of which are unsafe /unnecessary, which will improve traffic flow and operations along the trunk route.

The detailed layouts of the one road closure and 20 LILO access roads are shown in detail in **Annexure C**. The vehicle diversion and detour caused by these proposals can easily be evaluated in the five layouts spread throughout the route. The proposed exclusive right-turn facilities have also been depicted to make potential U-turns, possibly generated by the LILO access changes, as safe as possible by providing exclusive right-turns.

7.2 SPEED HUMPS/PEDESTRIAN CROSSING NECESSITY EVALUATION

It would seem that at some stage in the past several speed humps and/or yield controlled midblock crossings were introduced along the route. It was observed that some of these humps are severe, requiring their negotiation at 10-20 km/h. In several cases the speed humps have incorrectly been provided with zebra crossing markings, whereas no warning signage for a midblock crossing has been provided. It was possibly felt necessary to introduce these to calm the speed along the route since several sections had recently been upgraded to wide 2 lane boulevards with central median. In the case of Maphisa Road, 3 lanes per direction exist on half this section length.

Some 7 out of 22 speed humps/pedestrian crossings have been removed and either replaced with safe signalized pushbutton crossings at a more convenient location in relation to public transport activity, or where found to be unsafe from a geometric alignment viewpoint. (sight distance). The results of the evaluation performed is shown in Table 6 below. The existing pedestrian crossing speed humps positions are shown in Figure 28.

Phase	Description	Distance to next ped crossing	Reason	Location	Comments
	Midblock ped crossing 1	145	Tuck shop, Butchery and panel beaters		Update road markings and signage
	Midblock ped crossing 2	90		Bridge	Remove since 1 & 3 very close
	Midblock ped crossing 3	167	Tavern and Tuck shop		Update road markings and signage
1B	Midblock ped crossing 4	162			Remove
	Midblock ped crossing 5	120	Access for the community on western side		Update road markings and signage
	Midblock ped crossing 6	98			Remove because dangerous (no adequate sight dist.)
	Midblock ped crossing 7	71	Tuck shop		Update road markings and signage
1A	Pedestrian signal 05	100	Primary school	16m from Int.	Remains signalized. Update road markings and signage
IA	Midblock ped crossing 8		Primary school		Remove. Signalized ped crossing can be used.
	Midblock ped crossing 9	158	School and library		Update road markings and signage
	Midblock ped crossing 10	201	School and clinic		Update road markings and signage
	Midblock ped crossing 11	195	Day care centre and school		Remove. Mamani intersection to be used for crossing
	Midblock ped crossing 12	700	School		Remove. Mamani intersection to be used for crossing
	Midblock ped crossing 13	238	School		Update road markings and signage
	Midblock ped crossing 14	146	Stadium		Remove. Replace 14 and 15 with signalized crossing
1C	Midblock ped crossing 15	214	Stadium		Remove
	Midblock ped crossing 16	199	School		Remains signalized
	Midblock ped crossing 17	189	School		Update road markings and signage
	Midblock ped crossing 18	175	Bottle store		Update road markings and signage
	Midblock ped crossing 19	390	School and shopping centre		Reamin in position but road markings must be clear
	Midblock ped crossing 20	272	Tuck shop and liquor store		Update road markings and signage
	Midblock ped crossing 21		Post office and library		Update road markings and signage

Table 6: Results of speed hump/pedestrian crossing analysis

It is recommended that all speed humps be replaced where advised, with properly constructed and bus friendly speed humps and pedestrian speed tables.

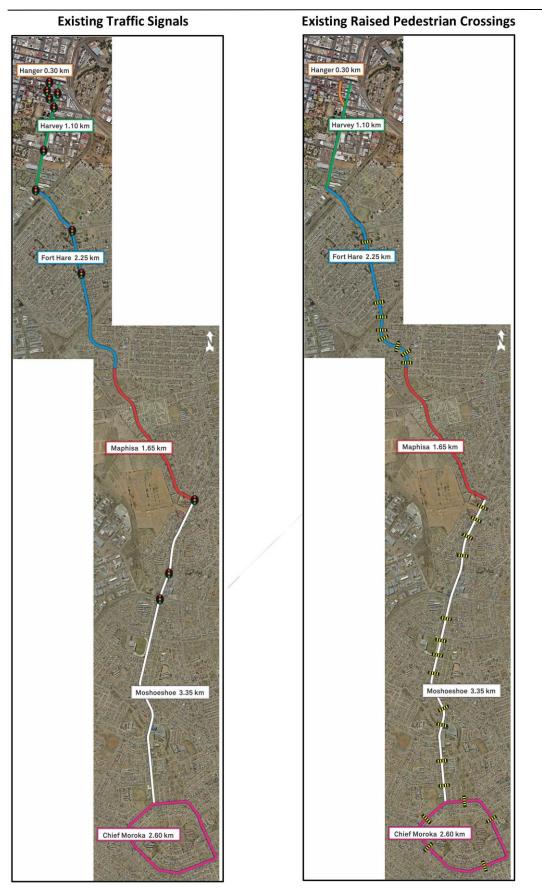


Figure 31: Location of existing pedestrian speed humps and signalised intersections

8 2023 FUTURE TRAFFIC EVALUATION

8.1 MODELLING ASSUMPTIONS

- The future traffic growth on the corridor will be taken up by the increase in Quality Bus (QB) patronage. However, we have modelled the traffic flows including all minibus-taxis. This means that effectively we have modelled a future volume which translates to a 2,5% p.a. growth rate for 5 years.
- The posted speed limit of the trunk route is 60k m/h except the Chief Moroko Crescent which has a traffic calmed recommended speed of 40 km/h. The Chief Moroko loop was not modelled.
- The TRANSYT model was broken up into separate sections coinciding with the sub-phase construction designation of A, B or C. The optimized and coordinated signal timings have been assumed as implemented.
- All the intersection upgrades and signalization as proposed were modelled to be in place.
- The long-term bus frequency of a bus every 2 minutes or 30 buses per hour was used in the TRANSYT future modelling. The service will start with a bus every 3 minutes or 20 buses per hour.
- Future maximum peak station passenger demand is 400 passengers per hour which translates to 14 passengers per bus. The operations plan forecast corridor peak passenger demand is 1940 passengers per hour.
- The total bus dwell time was calculated using 1,4 seconds per passenger (two loading doors with on board tagging) plus 5 second deceleration and acceleration. This resulted in a dwell time of 25 seconds in the peak direction and 15 seconds in the off-peak direction.

Items	Phase 1A
Items	Mafora Central
Pax per day	13,700
Fleet	23
Fleet: Approximate Number of Taxis to be used as feeders	59
Pax per bus per day	594
Peak Hour Pax	1,940
Distance	10.0
Round Trip Time	52.2
km/bus/day	171.9
Taxis to be removed	117
Unverified Taxi Fleet	222

• The minibus-taxis to be removed from the route was 117 taxis per hour in the peaks.

Figure 32: Extract from The MMM IPTN Operations plan for Phase 1 trunk route

8.2 RESULTS OF 2023 FUTURE TRAFFIC EVALUATION WITH QB

The detailed section, intersection by intersection evaluation results are shown in **Annexure D**. Any intersections with signal control were optimized and co-ordinated with a cycle of 90 seconds for the AM peak and PM peak. The off-peak is anticipated to run at a 60 second cycle as with the rest of Bloemfontein CBD.

8.2.1 Moshoeshoe Section- Chief Moroko to Maphisa

All intersections are operating at LoS A and LoS B, with the odd stop control intersection operating at LoS C on the side road. The worst turn at any intersection is operating at no worse than LoS C. An exception is the east approach of the Takalekoala intersection, however, as the traffic volume experiencing this high delay is low, a traffic signal is not warranted.

The average speed for this section of the modelled network is 30 km/h for future traffic conditions

8.2.2 Maphisa Section- Moshoeshoe to Mtyobile

All intersections are operating at LoS A and LoS B, with the odd stop control intersection operating at LoS C on the side road. The worst turn at any intersection is operating at no worse than LoS C.

The average speed for this section of the modelled network is 33 km/h for future traffic conditions

8.2.3 Fort Hare Section- Mtyobile to Harvey/Rhodes

The Fort Hare and Gonyane, Hamilton, Harvey and Rhodes intersections do not operate worse than LoS C during the peaks, with the worst turning movement operating no worse than LoS D.

The average speed for this section of the modelled network is up for the AM peak from 19 km/h to 24 km/h.

8.3 TRAVEL SPEEDS MODELLED AND ACHIEVED

The summary of the modelled travel speeds is summarized in the tables below.

EXISTING T	EXISTING TRAFFIC EVALUATION						
PHASE 1 ABC	QUALITY BUS-	Average of 2 I	Directions				
MIXED TRAFF	IC SPEED OUT	PUT ACHIEVED)				
		AM Peak			PM Peak		
TRANSYT		Distance/	Mixed	Time	Distance/	Mixed	Time
SECTION	Description	(km)	(km/h)	(hrs)	(km)	(km/h)	(hrs)
Phase 1 C	Moshoeshoe	3,29	34,4	0,10	3,29	34,3	0,10
Phase 1A	Maphisa	1,88	37,3	0,05	1,88	36,9	0,05
Phase 1B	Fort Hare	2,42	18,9	0,13	2,42	25,6	0,09
TOTAL		7,59	27,7	0,27	7,59	31,4	0,24

Table 7: Existing (2018) model travel speed results for all traffic

FORECAST	FORECAST TRAFFIC EVALUATION						
PHASE 1 ABC	QUALITY BUS-	Average of 2	Directions				
MIXED TRAF	FIC SPEED OUT	PUT ACHIEVED)- without s	tops			
		AM Peak			PM Peak		
TRANSYT SECTION	Description	Distance/ (km)	Mixed (km/h)	Time (hrs)	Distance/ (km)	Mixed (km/h)	Time (hrs)
Phase 1C	Moshoeshoe	3,29	29,2	0,11	3,29	30,1	0,11
Phase 1A	Maphisa	1,88	33,2	0,06	1,88	32,3	0,06
Phase 1B	Fort Hare	2,42	24,3	0,10	2,42	28,6	0,08
TOTAL		7,59	28,2	0,27	7,59	30,1	0,25

Table 8: Travel speed results for upgraded network for mixed traffic along Phase 1 trunk route

Note the significant increase in travel speed for the Fort Hare section during the AM peak because of the proposed intersection upgrades and effective removal of the bottlenecks.

8.3.1 Achieved Quality Bus speeds including stops.

TRANSYT is able to model the buses in a shared lane with the mixed traffic and is able to assume a stop dwell time for each station, wherever this occurs on the link. The following table shows the round-trip results for the bus speed during the AM and PM peaks.

	FORECAST TRAFFIC EVALUATION							
	-	BUS- Averag	-		S			
BUS SPEED	OUTPUT A	CHIEVED (w	ith Stops)				
		AM Peak			PM Peak			
TRANSYT		Distance/	Qual.Bus	Time	Distance/	Qual.Bus	Time	
SECTION	Description	(km)	(km/h)	(hrs)	(km)	(km/h)	(hrs)	
Phase 1 C	Moshoeshoe	3,29	20,3	0,16	3,29	24,2	0,14	
Phase 1A	Maphisa	1,88	19,1	0,10	1,88	20,2	0,09	
Phase 1B	Fort Hare	2,42	24,3	0,10	2,42	28,6	0,08	
TOTAL		7,59	21,1	0,36	7,59	24,2	0,31	

The average peak Phase 1 trunk route round trip time is estimated to be 54,5 minutes (21,9 km/h).

The Harvey/Hanger and Chief Moroko section speeds were based on actual travel times observed.

9 CONCLUSIONS

- a) The Fort Hare/Hamilton and Harvey/Rhodes are currently some of the most significant bottlenecks on the route, which do require upgrading, especially for the AM peak period. If these upgrades are implemented then the traffic operations are satisfactory. These are listed in item h) and shown in Chapter 5.
- b) It was established that the removal of the south-west slip lane and the removal of both the southern slip lanes for the Fort Hare/Hamilton intersection both operate satisfactorily for future traffic conditions.
- c) In many cases along the trunk route stations in the future, the bus can stop in the leftmost traffic lane as the volumes along these sections do not exceed 1100vph.
- d) The final position and location of the bus stations were determined from a surrounding land-use pedestrian activity analysis, combined with practical feasible locations where there is land readily available or waiting areas can be easily created by utilizing the existing side road closures.
- e) The rationalization of the access side roads has increased the average spacing between intersections from 120 m to 193 m and removed a proliferation of right-turns and median island gaps to promote the Phase 1 trunk route to a higher order collector road. Nevertheless, by using LILO intersections, many of which are currently in place, access to the surrounding township is largely maintained, obviating the need for long detour routes.
- f) The number of speed humps/pedestrian speed tables have been reduced, however all those with pedestrian attractors have been left or accommodated at very nearby intersections. All current speed humps and advised pedestrian crossing speed tables will all need to be reconstructed with a profile acceptable for the Quality Bus.
- g) The transfer activities at Station 005 have been facilitated offsite and the Moshoeshoe/Tsuene intersection signalized. Alternative 4 of four alternatives evaluated is recommended for Station 005 with a separate bus and minibus-taxi facility. Furthermore, the proposed northbound Station 005A which potentially requires a road closure, does not have to be implemented for the initial Phase 1 trunk operations since the transfer facility is also the bus turnaround.
- h) The future peak operating conditions along the Phase 1 trunk route are considered highly satisfactory if the intersection upgrades identified in the 2018 traffic evaluation and above rationalization are implemented. The following intersection upgrades which are deemed necessary for the future satisfactory Phase 1 Trunk Route traffic operations based on the existing evaluation above are listed below:
 - Intersection of Harvey Road and Rhodes Avenue- maintain existing slip lanes, but introduce a dual N-S right-turn phase on Harvey Road for all times of the day
 - Intersection of Harvey Road and Fort Hare Road- extend the south approach right-turn from 60m to at least 100m in length. Provide a short 4th signal phase for traffic from the south during the PM peak. Repaint the east approach two right-turn lanes.
 - Intersection of Fort Hare Road and Hamilton Road- remove the left slip lane from the south-west corner and replace with a 40m long exclusive left turn. Add an additional short right-turn lane from the east approach to cater for this high turn movement.

PHASE 1 TRUNK ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

- The 3-way stop at Maphisa and Maibamolotsha should be converted to stop control on the side road. The right turn lane and left slip lane on Maibamolotsha is to be retained. Although tested this intersection does not warrant signalization.
- The right-turn lane from the north at the Moshoeshoe/Maphisa intersection and the one from the south at the Moshoeshoe/Tsuene intersection, should be converted to a single exclusive right-turn lane for better traffic operations.
- Signals are warranted and should be implemented at the intersection of:
- Maphisa and Mtyobile
- Moshoeshoe and Mamani
- Moshoeshoe and Tsuene (to facilitate a bus /taxi transfer facility- Station 005)
- i) The future bus operating speed and round-trip time was found to be realistic and satisfactory and within the Operation Plan tolerance assumptions in this regard.

10 RECOMMENDATIONS

It is recommended that the intersection upgrades, the final station positions, the access management changes and the removal of certain speed hump/ pedestrian crossings be implemented before the Phase1 trunk route Quality Bus operations commence.

ANNEXURE A –

2018 Phase 1 Corridor Traffic volumes

ANNEXURE B –

Results of 2018 Existing Traffic Evaluation

ANNEXURE C –

Depiction of position of proposed Road Closures and LILO access changes

ANNEXURE D –

Results of 2023 Future Traffic Evaluation

MMM – City Wide Integrated Public Transport Plan

I.2 Traffic Impact study – OR Tambo Corridor

INTEGRATED PUBLIC TRANSPORT NETWORK

DRAFT OLIVER TAMBO ROUTE TRAFFIC ASSESSMENT REPORT

December 2018

INTEGRATED TRANSPORT NETWORK PROJECT

MANGAUNG METROPOLITAN MUNICIPALITY

We Engineer History

Client Reference: Contract No.: C447

GladAfrica Reference: Project Number 127

Project Name: Integrated Public Transport Network (IPTN)

Report Heading: Phase 1 Oliver Tambo Route Traffic Assessment Report for the Integrated Transport Network Project, Mangaung Metropolitan Municipality,

Compiled by: Adrian Brislin Pr.Eng.

Signature: ______ Date: 30 November 2018

Reviewed by:Leon Van Genderen

Signature: _____ Date: 30 November 2018

Released by: Sarel Oberholser, Pr Eng.

Signature:	Date: 30 November 2018

I, Adrian Brislin Pr.Eng., author of this traffic Assessment report, hereby certify that I am a professional traffic engineer (Registration number: 980355) and that I have the required experience and training in the field of trafrfic and transportation engineering, as required by the Engineering Council of South Africa (ECSA), to compile this traffic report and I take full responsibility for the content, including all calculations, conclusions and recommendations made therein.

Signature: _____

Received and accepted by a duly authorised representative of the client

Client representative name: Abednigo Lekale

Signature:

Date:

Client representative name: Steve Rapulungoane

Signature: Date: _____

Table of Contents

1	INT	RODUCTION	1
2	PUR	POSE OF THE REPORT	1
3	PHA	SE 1 IPTN Oliver TAMBO ROUTE CHARACTERISTICS AND OBSERVATIONS	2
	3.1	Existing Road Hierarchy	2
	3.2	Intersection control	16
	3.3	Pedestrian Facilities	16
4	201	8 TRAFFIC MODELLING AND EVALUATION	
	4.1	Modelling Assumptions	
	4.2	Results of 2018 Traffic Evaluation	18
	4.2. Stre	1 South Section- Taelo Molosioa, David Montoedi, DM Selemela and Oliver Tambo up to Ha et 18	artley
	4.2.	,	
	4.2.	3 CBD Section- St George, Hanger, St Andrews and Harvey	18
5	PRC	POSED CHANGES/UPGRADES TO Oliver TAMBO ROUTE FOR IPTN OPERATIONS	
	5.1	Proposed Signal Intersection Upgrades	
	5.1.		
	5.1.		
	5.1.	3 Intersection of Oliver Tambo & Gutsche-Hartley	23
	5.1.	4 Intersection of Oliver Tambo & Goede Hoop	24
	5.1.	5 Intersection of Oliver Tambo & De Waal	24
	5.1.	6 Intersection of Oliver Tambo and Vooruitsig	25
	5.1.	8 Intersection of Oliver Tambo & Harvey-Monument	26
	5.1.	9 Intersection of Oliver Tambo & Francken	27
	5.1.	10 Intersection of Oliver Tambo & Cross	27
6	BUS	STOPPING AND REFINEMENT OF STATION POSITIONS	
	6.1	Bus Stopping In Trafficked Lane	28
	6.2	Bus Station Positions	28
	6.2.	1 Harvey-Monument and Oliver Tambo Station	28
	6.2.	2 Vooruitsig_De Waal Station	29
	6.2.	3 Hartley-Gutsche Station	29
	6.2.	4 Hamilton Station	30
	6.2.	5 University of Free State South Campus Station	30
	6.2.	6 Lebona Motsoeneng Station	32

	6.2.7	David Montoedi Station
	6.2.8	Taelo Molosioa Leepile Station
7	RATIC	NALIZATION OF PEDESTRIAN CROSSINGS
	7.1 F	Pedestrian Crossing Necessity Evaluation
8	2023	FUTURE TRAFFIC EVALUATION
	8.1 N	Addelling Assumptions
	8.2 F	Results of 2028 Future Traffic Evaluation with QB
		Model T1A: South Section- Taelo Molosioa, David Montoedi, DM Selemela, Oliver Tambo up to tersection of Gutsche-Hartley (distance 6,47 km with a 3km length of Oliver Tambo posted with a /h speed limit
	8.2.2 and b	Model T2(1B): Oliver Tambo Section- from Goede Hoop to St George, Hanger to Douglas Street ack along Harvey Road and St George to Oliver Tambo Street back southwards
	8.3 1	ravel Speeds Modelled and Achieved
	8.3.1	2018 Mixed traffic operating speeds
	8.3.2	2028 Mixed traffic operating speeds
	8.3.3	Achieved IPTN Quality Bus speeds including stops
9	CONC	LUSIONS
1() REC	COMMENDATIONS

List of Figures

Figure 1: Extract from Bloemfontein Road Hierarchy- (Red-Arterial, Purple-Activity Street, Green-Collect	tor)2
Figure 2: Sectional layout of the Oliver Tambo route for the Quality Bus	2
Figure 3: Upgraded concept layout of David Montoedi and DM Selemela signalized intersection	22
Figure 4: Upgraded concept layout of Oliver Tambo and Tannery signalized intersection	23
Figure 5: Upgraded concept layout of Oliver Tambo and Gutsche-Hartley signalized intersection	23
Figure 6: Upgraded concept layout of Oliver Tambo and Goede Hoop signalized intersection	24
Figure 7: Upgraded concept layout of Oliver Tambo and De Waal signalized intersection	24
Figure 8: Upgraded intersection of	25
Figure 9: Proposed Layout of the Oliver Tambo and Harvey-Monument signalized Intersection	26
Figure 10: Upgraded concept layout of Oliver Tambo and Francken signalized intersection	27
Figure 11: Upgraded concept layout of Oliver Tambo and Cross signalized intersection	27
Figure 12: Proposed location of e bus stations at the Oliver Tambo & Harvey-Monument intersection	29
Figure 13:Phase 1 Oliver Tambo Route and Station locations	31
Figure 14: Concept Layout of Oliver Tambo Route Turnaround/Transfer facility	32

List of Tables

Table 1: Road Characteristics	3
Table 2: Level of Service (LoS) definitions for traffic evaluation.	17
Table 3:Results of Signal Warrant Testing for Phase 1 Oliver Tambo Route Intersections	20
Table 4: 2018 Results of average speeds along IPTN Phase 1 Oliver Tambo Route	35
Table 5: 2028 Results of average speeds along IPTN Phase 1 Oliver Tambo Route	35
Table 6: 2028 Results of the average IPTN bus travel speeds	36

Annexures

- Annexure A 2018 Phase 1 Oliver Tambo Corridor Traffic volumes
- Annexure B Results of 2018 Existing TRANSYT Traffic Evaluation
- Annexure C SIDRA Detailed Results of 2028 Key Intersection Evaluations
- Annexure D Results of 2028 Future TRANSYT Traffic Evaluation

Nomenclature

- CBD Central Business District
- IPTN Integrated Public Transport Network
- MMM Mangaung Metropolitan Municipality
- NMT Non-Motorised Transport
- V/C Volume / Capacity Ratio
- LoS Level of Service
- QB Quality Bus
- UA Universal Access

1 INTRODUCTION

This report assesses the Phase 1 IPTN Route along Oliver Tambo Road (old Church Street) section up to the Hanger and Harvey and Douglas Street intersection in the Central Business District close to the Intermodal Facility. Although the capacity and operations around the Intermodal facility will be evaluated, the detailed evaluation will be undertaken as part of the CBD Phase 1 IPTN route study. The O.R Tambo bus route will be the next implementable section of the IPTN.

A 10-year traffic horizon was considered in the traffic evaluation, since the purpose was to evaluate the initial Quality Bus operation which is to operate in early 2019, but a traffic growth scenario was tested to account for future land -use changes along the corridor.

2 PURPOSE OF THE REPORT

The purpose of this Traffic Assessment report is to provide more detail on the actual traffic modelling of the key route sections, with recommendations regarding access management, pedestrian crossings along the route and the refinement of station positions given the road network characteristics.

This Traffic Assessment report consists of the following:

- 1) Model the existing Phase 1(OR Tambo) route conditions
- 2) Identify current route bottlenecks/operational problems and how these should be upgraded
- 3) Refine the final station positions based on surrounding land-use and road network characteristics
- 4) Optimize the route access requirements and
- 5) Model the future traffic conditions with the Quality Bus (QB) stopping and intersection upgrades in order to verify future traffic operating conditions
- 6) Summarize the forecast traffic operations and achieved bus and mixed traffic speeds
- 7) Make final route upgrading recommendations

PHASE 1 IPTN OLIVER TAMBO ROUTE CHARACTERISTICS AND OBSERVATIONS 3

EXISTING ROAD HIERARCHY 3.1

The existing road hierarchy is shown adjacent and the classification of the roads under investigation can be summarised as follows:

Major Arterial

Collector

- Hanger Street:
- St Andrews Street:
- Harvey Road: •
- St George Street:
- OR Tambo Road between Harvey and Falck: Collector
- OR Tambo between Falck and St George: •
- DM Selemela Street:
- David Montoedi Street:
- Taelo Molosioa:

- Major Arterial Collector
- OR Tambo Road bt DM Selemela & Harvey: Major Arterial
- •

- **Activity Street**
- Collector Collector

Collector

Figure 1: Extract from Bloemfontein Road Hierarchy- (Red-Arterial, Purple-Activity Street, Green-Collector)

The Phase 1 trunk route has some distinct sections with homogenous road cross-section and traffic operating conditions. These are shown in Figure 2 below and can be described as follows from south to north:

- Taelo Molosioa Street from Leepile Street to David Montoedi Street intersection (1.04 km long and • a single lane per direction surrounded by residential areas)
- David Montoedi Street from Taelo Molosioa Street to DM Selemela Street (1.78 km long with a single lane per direction, surrounded on east side by residential with church and College on the western side with adjacent open land.)

- DM Selemela Street from David Montoedi Street to Oliver Tambo Road (580 m long with a single lane per direction, alongside is the Totsoletso High School, a funeral home and industrial sites closer to Oliver Tambo)
- OR Tambo Road from DM Selemela Street to St George Street (7.1km long in total with two lanes per direction and curbed median island from DM Selemela Street to Falck Street and a single lane per direction from Falck Street to St George Street)
- St George from Oliver Tambo Road to Hanger Street (400 m long with a single lane per direction).
- Hanger Street from St George Street to St Andrews Street proposed (310m long as a 3-lane one-way urban street)
- St Andrews from Hanger Street to Harvey Road (90m long as a 2-lane one-way urban street)
- Harvey Road from St Andrews Street to the proposed intermodal transfer facility back to St George in the reverse direction (300m long as a 3-lane one-way urban street)

Road	Length	Road Reserve	Speed Limit	Cross Section	Number of Intersections
Hanger	0.31 km	16m	60 km/h	3 lanes (one way)	3
St Andrew	0.09 km	16m	60 km/h	2 lanes (one way)	2
Harvey	0.31 km	16m to 21m	60 km/h	3 lanes (one way)	3
St George	0.40 km	16m to 21m	60 km/h	1 lane per direction	2
OR Tambo	7.10 km	80m	60 km/h 80 km/h	CBD – 1 lane per direction South of CBD - 2 lanes per direction with median	5 13
DM Selemela	0.58 km	25m	60 km/h	1 lane per direction	1
David Montoedi	1.78 km	25m	60 km/h	1 lane per direction	8
Taelo Molosioa	1.04 km	28m to 30m	60km/h	1 lane per direction	3
Total	11.61 km				40

Table 1: Road Characteristics

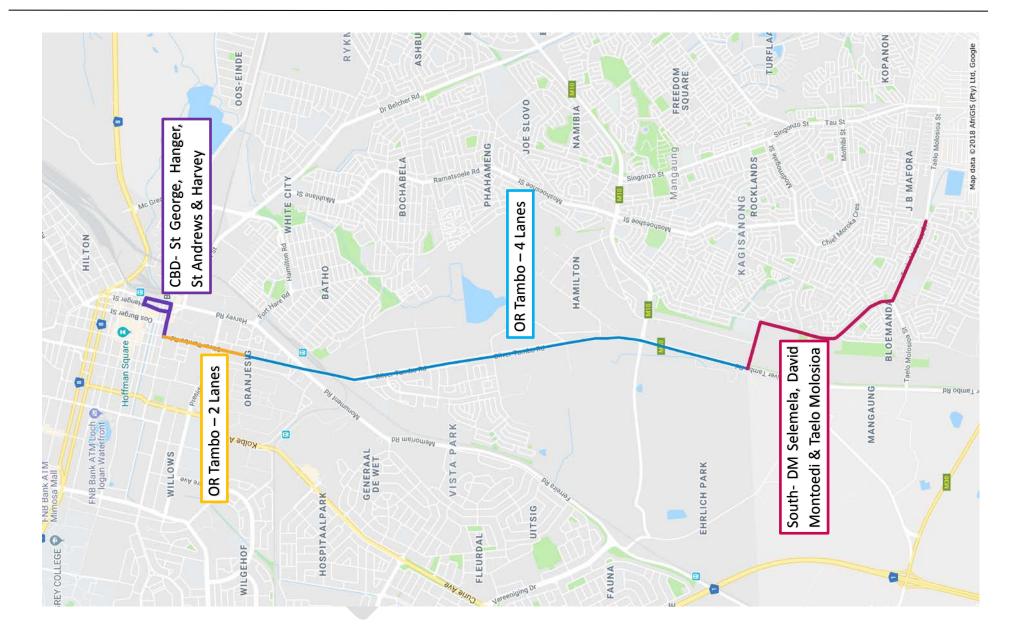


Figure 2: Sectional layout of the Oliver Tambo route for the Quality Bus

3.2 INTERSECTION CONTROL

A total of 40 intersections are located along the route with 12 intersections being currently controlled by means of traffic signals and 28 intersections are stop controlled (1-way, 2-way, 3-way and 4-way stops), The following intersections are signal controlled:

- OR Tambo Road and DM Selemela Street
- OR Tambo Road and M10
- OR Tambo Road and Vooruitsig Street
- OR Tambo and Monument Road
- OR Tambo Road and Falck Street
- OR Tambo Road and Rhodes Avenue
- OR Tambo Road and St George Street
- St George Street and Fraser Street
- St George Street and Hanger Street
- Hanger Street and St Andrews Street
- Harvey Road and St Andrews Street
- Harvey Road and St George Street

The number of intersections as well as the irregular spacing thereof increase the friction along the route which impact on the capacity as well as mobility along the route. It should be noted that the service links along Oliver Tambo road are located closely to the Oliver Tambo road and should be taken into consideration when designing of the traffic signals. The counted 2018 traffic volumes are shown in **Annexure A**.

3.3 PEDESTRIAN FACILITIES

In general, paved walkways are provided only along the northern part of the route from Monument Road into the CBD. The south part of the road does not have formal pedestrian sidewalk facilities. Pedestrian crossings (6) are provided along Taelo Molosioa Street (1), David Montoedi Street (2), Oliver Tambo Road (2) and St George Street (1).

Many of these have been placed because of a pedestrian desire line, however, we would have to check the warrants for these crossings.

4 2018 TRAFFIC MODELLING AND EVALUATION

The Level of Service (LoS) depends on the traffic delays at the intersection, either due to low capacity on the approaches, Oliver due to inadequate signal timings for signalized intersections. LoS A represents the best operating conditions with minor Oliver no delays while LoS F represents the worst operating condition with serious delays. Delays of less than 55, 50 and 35 seconds for signalized, roundabout and stop sign control intersection respectively are deemed acceptable as it is not lower than LoS D. The delay criterion for LoS is shown in **Table 2**.

Level of Service	Control delay per vehicle in seconds (d)						
	Signals	Roundabout	Stop Sign Control				
Α	$d \le 10$	$d \le 10$	$d \le 10$				
В	$10 < d \le 20$	$10 < d \le 20$	$10 < d \le 15$				
С	$20 < d \le 35$	$20 < d \le 35$	$15 < d \le 25$				
D	$35 < d \le 55$	$35 < d \le 50$	$25 < d \le 35$				
E	$55 < d \le 80$	$55 < d \le 70$	$35 < d \le 50$				
F	80 < d	70 < d	50 < d				

Table 2: Level of Service (LoS) definitions for traffic evaluation.

4.1 MODELLING ASSUMPTIONS

- The future traffic growth on the corridor will be taken up by an increase in Quality Bus patronage. However, the future model has effectively assumed a 1.8%p.a. growth rate for 10 years, yielding a growth factor 1.2
- 2) The posted speed limit of the trunk route is 60 km/h except the 3,35km of the south part of Oliver Tambo which has a speed limit of 80 km/h posted.
- 3) The current signal timings were used for the existing analysis. Only the major intersections have been modelled.

4.2 RESULTS OF 2018 TRAFFIC EVALUATION

The detailed TRANSYT output of evaluation results is shown in **Annexure B.** These results have been summarized below.

4.2.1 South Section- Taelo Molosioa, David Montoedi, DM Selemela and Oliver Tambo up to Hartley Street

This whole route is operating at a high level of service (LoS) with LoS A or LoS B never exceeded during both the AM peak and PM peak. The operating speed is also reasonably high since it includes a 80km/h speed limit over a large portion of the route.

4.2.2 OR Tambo Section- Gutsche-Hartley to St George

The intersection of Oliver Tambo and Harvey-Monument shows an overall LoS C during both the AM peak and PM peak with certain turning movements operating at LoS D.

The intersection of Oliver Tambo and Vooruitsig combines the adjacent service road within the traffic signal operations, so although we cannot show the concept layout with the service road, this has been accounted for in the signal timings. This intersection too operates at overall LoS C with some turning movements operating at LoS D during both the AM peak and PM peak.

The traffic evaluation also indicates poor operating conditions during especially the AM peak at the Fort and Hanger-Harvey intersection. This is mainly because of minibus-taxi misbehaviour, the main ones which can be highlighted as follows:

- The Fort east approach leftmost lane has many taxis stopping in it, thereby effectively reducing the capacity to the westbound movement to one lane only.
- The south approach left slip movement which is marked as a continuous lane into Hanger Street with 3 lanes, however because of minibus-taxi occupation of this leftmost lane of Hanger to drop passengers, the continuous lane actually functions as a give way filter since they have to move across one lane to the centre lane of Hanger Street (LoS D)

4.2.3 CBD Section- St George, Hanger, St Andrews and Harvey

- a) The 2018 traffic evaluation has revealed very few capacity problems or queueing along the Oliver Tambo corridor that could not be solved by good signal co-ordination
- b) For the future year traffic evaluation for 2028, in order to account for land use growth, we have assumed a 10 year average growth rate of 1,8% p.a. yielding a growth factor of 1.2.
- c) To be conservative we have assumed 30 buses per hour to be running on this corridor even though the starting demand will be only 10 buses per hour.
- d) In general, the IPTN route along Oliver Tambo is divided into 4 sections which are clearly shown in Figure 1 of the report, with a township section, a high speed (80km/h) section of Oliver Tambo dual carriageway with service roads, then an activity street section followed by the CBD section near the proposed intermodal Transfer facility
- e) It is this last northern section where the most problems occur. There is not a capacity problem per se, but high friction is caused on Hangar Street, St Andrews Street and Harvey Road all the way back south to Fort Road intersection by the following:
 - Minibus taxi activity stopping wherever they want to drop-off or pick up a passenger(s)
 - Some deliveries on the cross streets of Douglas and Peet Avenue, but also loading directly in the Street of Hangar and Harvey on top of parking on both sides of the one way of Harvey

- Haphazard pedestrian activity who are milling around aimlessly, supporting informal Hawking stores Oliver seeking minibus taxi transport
- Although there is a signal at Hanger and Douglas St., it is not functional and there is no safe traffic control at Hanger and Peet Avenue. Just chaos and uncertainty for both driver and pedestrians alike.
- There is no intersection control at Harvey Road and Peet Avenue or Douglas Street, only the chaos and uncertainty such as mentioned above.
- The minibus taxis are holding in Douglas Street and blocking it completely to any other vehicular traffic during the off-peak.

The answer to all the above problems is reduce the number of taxis, enforce all traffic laws and create controlled intersections for safe controlled vehicular and pedestrian crossings.

5 PROPOSED CHANGES/UPGRADES TO OLIVER TAMBO ROUTE FOR IPTN OPERATIONS

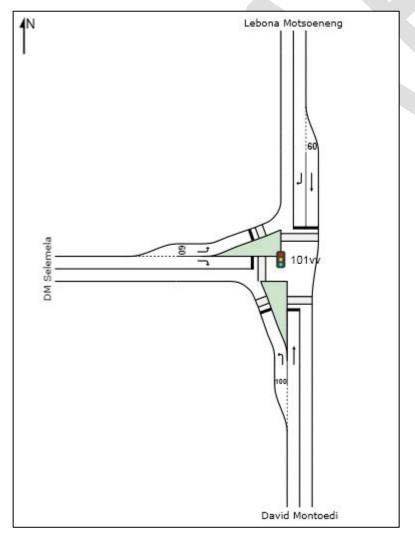
The following intersection upgrades which are deemed necessary for the future satisfactory Phase 1 Oliver Tambo Route traffic operations, based on the existing evaluation as well as the future 2028 evaluation for which intersection changes are required for the purposes of a signal warrant Oliver IPTN station/pedestrian requirements are listed in **Table 3** below.

Table 3:Results of Signal Warrant Testing for Phase 1 Oliver Tambo Route Intersections

	AM/PM				
Intersection	Average delay (sec)	Volume (veh /hr /lane)	Average Queue length (veh)	Signal warranted	Comments
Taelo Molosioa & Leepile			0	No	
Taelo Molosioa & David Montoedi			0	No	
Taelo Molosioa & Simon Miya			0	No	
Taelo Molosioa & Oliver Tambo	_		0	No	
OR Tambo & Cemetry access	44	106	1,3	No	
David Montoedi & DM Selemela	101	393	11	Yes	
OR Tambo & Tannery	8753	86	209	Yes	
					But override with NO since, Side volumes
OR Tambo & Hartley	8612	119	285	Yes	too low
OR Tambo & Gutsche	12735	159	562	Yes	
OR Tambo & Goede Hoop	6018	173	289	Yes	
OR Tambo & DeWaal	224	269	17	Yes	
OR Tambo & Francken	17274	171	820	Yes	
OR Tambo & Watkey	395	23	2,5	No	
OR Tambo & Bisseaux	43	25	0	No	
OR Tambo & Papenfus	20	24	0	No	
OR Tambo & Cross	597	101	17	Yes	
OR Tambo & Goddard	121	112	3,8	Yes	But override with NO since, Side volumes too low

Intersection Signalisation is warranted when the worst 1 hour average queue > 4 (SARTSM, Vol 3)

The results above indicate that 7 intersections need to be newly signalized for the Oliver Tambo Route.


5.1 PROPOSED SIGNAL INTERSECTION UPGRADES

These will be listed from south to north and the concept layout for the intersection upgrade will be shown. Notably many of the slip lanes need to be signalized with enough of a radius to accommodate the large trucks accessing the industrial area from the service road. UA requirements also demand signalization as well as staged pedestrian crossings of especially Oliver Tambo Road and all right turn signal phasing needs to be protected right turn phases so that the slip lane and right turns do not conflict. All these layouts and signalization were tested using SIDRA for the 2028 demand and minimum green times for the side road to accommodate safe staged pedestrian crossings.

The resultant intersection upgrade was assumed to be in place for the 2028 TRANSYT model. All other intersections, not necessarily highlighted, will have to be upgraded to accommodate the UA pedestrian requirements; nevertheless, within the overarching design legislation, where it may be in conflict with UA-NTR1. Although the AM peak and PM peak will be able to run at 90 second cycles, it is highly unlikely that the off-peak could run at a 60 second cycle time, since there are 4 signal phases with some minimum green times for safe pedestrian crossing.

The detailed Movement Summary and Phasing diagrams are shown in Annexure C.

5.1.1 Intersection of David Montoedi & DM Selemela

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

Figure 3:Upgraded concept layout of David Montoedi and DM Selemela signalized intersection

5.1.2 Intersection of Oliver Tambo & Tannery

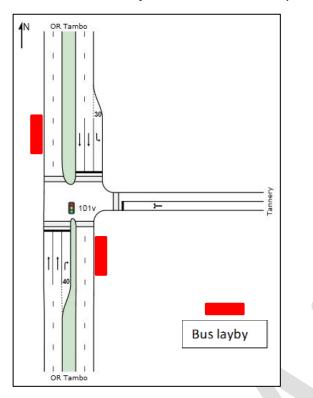
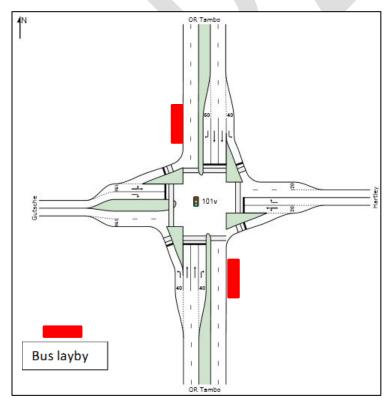



Figure 4: Upgraded concept layout of Oliver Tambo and Tannery signalized intersection

5.1.3 Intersection of Oliver Tambo & Gutsche-Hartley

Figure 5: Upgraded concept layout of Oliver Tambo and Gutsche-Hartley signalized intersection

5.1.4 Intersection of Oliver Tambo & Goede Hoop

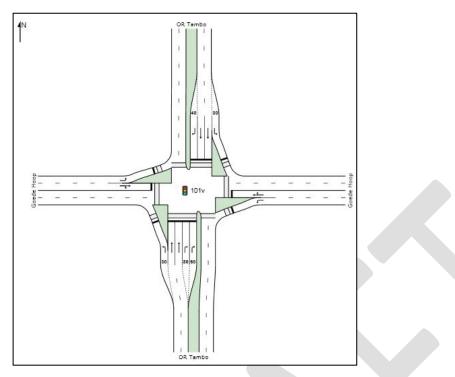
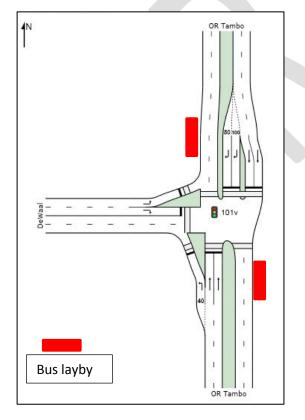
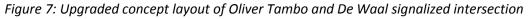
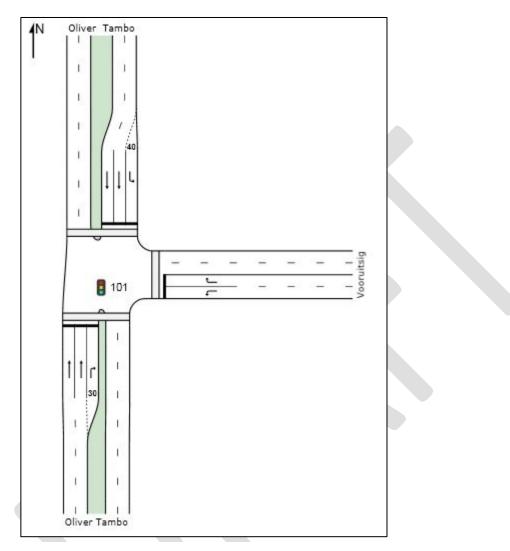
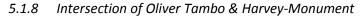




Figure 6: Upgraded concept layout of Oliver Tambo and Goede Hoop signalized intersection


5.1.5 Intersection of Oliver Tambo & De Waal

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY


Please note the additional median separation of north approach through and right turn movements.

5.1.6 Intersection of Oliver Tambo and Vooruitsig

Figure 8: Upgraded intersection of

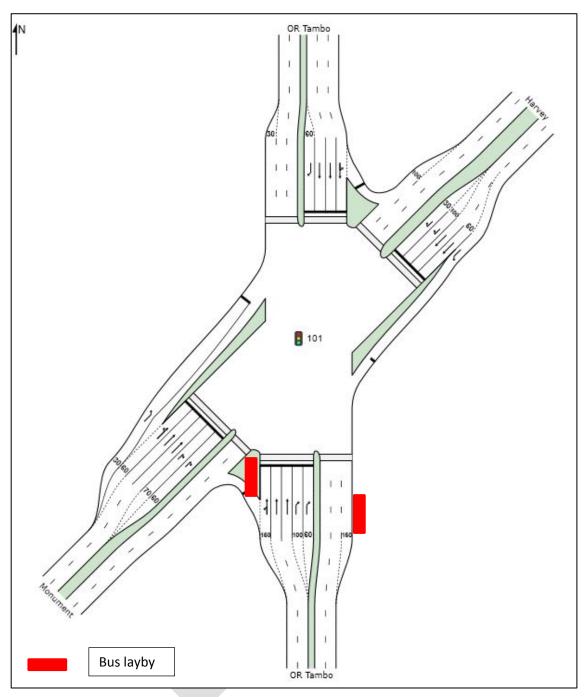
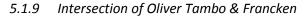



Figure 9: Proposed Layout of the Oliver Tambo and Harvey-Monument signalized Intersection

A significant amount of widening is required, most of which is on the south approach. The busses will have an opportunity to enter the traffic stream when the N-S right turn protected phase has green.

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

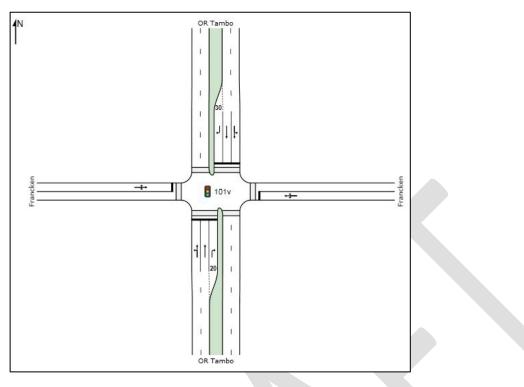
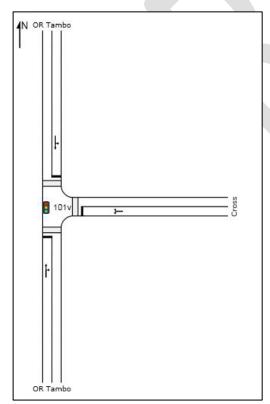



Figure 10: Upgraded concept layout of Oliver Tambo and Francken signalized intersection

5.1.10 Intersection of Oliver Tambo & Cross

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

6 BUS STOPPING AND REFINEMENT OF STATION POSITIONS

6.1 BUS STOPPING IN TRAFFICKED LANE

The Department of Transport has recommended that the buses stop in the street; this being based on the Cape Town My Citi experience, where the buses have significant difficulty trying to return to the running lane from a layby.

However, the posted speed limit of Oliver Tambo is 80km/h and stopping in lane poses a threat to the safety of the road users of this section of Oliver Tambo Street. Therefore, the buses can stop in the leftmost running lane at all the other stations except those on the 80 km/h Oliver Tambo Street section, where laybys are proposed. Although there are not many stations where laybys are required, we have nevertheless ensured that the traffic signal plan for the intersection straddled by laybys will include a protected right turn signal phase, during which the IPTN bus assuredly will be able to enter the Oliver Tambo traffic stream.

The Taelo Molosioa and Leepile station is a turn-around station, therefore, the provision of an off-street IPTN facility is necessary.

6.2 BUS STATION POSITIONS

The approximate position of the stations has been determined by considering the surrounding land-use (residential Oliver retail) as well as the minibus-taxi stopping activity in the same particular area.

A map of the Phase 1 Oliver Tambo Route with station positions and names is shown in **Figure 4** below. The proposed intersection layouts of the future signalized intersections have been provided in section 5.

6.2.1 Harvey-Monument and Oliver Tambo Station

Monument Oliver Tambo Station- for the northbound and southbound station, the bus can stop in the leftmost lane as proposed by the DOT since the operating speed should be no higher than 60 km/h. The bus stations should be placed on the far-side of the intersection. In the northbound case we have had to modify the proposal to the nearside in the traffic island and for the southbound it is opposite the "Dent Doctor", where a wide sidewalk has already been provided. All the directional slip lanes will have to be signalized and this configuration tested with a likely additional through lane to compensate for the loss of capacity.

Figure 12: Proposed location of e bus stations at the Oliver Tambo & Harvey-Monument intersection.

6.2.2 Vooruitsig_De Waal Station

Vooruitsig_De waal Station- The posted speed limit of Oliver Tambo Road is 80km/h, therefore, the construction of laybys for both directions is recommended. The signalization of the nearest intersection (OR Tambo and DeWaal) to the station is recommended for the bus to find a gap and join the traffic. The signalization of the intersection is necessary for the safe crossing of pedestrians and it has been tested that signalization is warranted. As per common traffic engineering practice, the laybys will be provided on the far-side of the intersection for the different directions along Oliver Tambo.

6.2.3 Hartley-Gutsche Station

Hartley-Gutsche Station - The posted speed limit of Oliver Tambo Road is 80km/h, therefore, the construction of laybys for both directions is recommended. The signalization of the nearest intersection (OR Tambo and Gutsche-Hartley) to the station is recommended for the bus to find a gap and join the traffic. The signalization of the intersection is necessary for the safe crossing of pedestrians and it has been tested that signalization is warranted. As per common traffic engineering practice, the laybys will be provided on the far-side of the intersection for the different directions along Oliver Tambo.

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

6.2.4 Hamilton Station

Hamilton Station- The posted speed limit of Oliver Tambo Road is 80km/h, therefore, the construction of laybys for both directions is recommended. The signalization of the nearest intersection (OR Tambo and Tannery) to the station is recommended for the bus to find a gap and join the traffic. The signalization of the intersection is necessary for the safe crossing of pedestrians and it has been tested that signalization is warranted. As per common traffic engineering practice, the laybys will be provided on the far-side of the intersection for the different directions along Oliver Tambo.

6.2.5 University of Free State South Campus Station

University of Free State South Campus Station- the existing laybys can be used by the bus. The creation and utilization of laybys is necessary as the posted speed on Oliver Tambo Road is 80km/h. In previous Station locations we have motivated for the provision of a traffic signal which creates time for the bus to enter the Oliver Tambo traffic stream. However, in this case the location of the bus station is determined by the pedestrian pathways to the main University of the Free State South campus pedestrian access. If laybys are provided, since there is no side road intersection, there will be little opportunity for the bus to enter back into the traffic stream. Therefore, two alternative solutions are proposed:

- a) Create a T-junction intersection from the east side service road (industrial area with vacant properties for industrial densification.) The location will be exactly in the middle of the Oliver Tambo section between DM Selemela Street intersection and the vehicular access to the UFS South Campus (total distance of 630 m). Such a T-junction would need to be signalized to create the bus traffic stream entry opportunity, although may not be warranted from a vehicular viewpoint. In terms of Road Hierarchy and Access Requirements, such a T-junction would be allowed for a Class 2U arterial.
- b) A drop-off is created at the existing drop-off facility and the IPTN bus must divert to the UFS South campus drop-off/pick-up (which would have to be upgraded for boarding/alighting to UA standards) via the current T-junction off Oliver Tambo Road. This would mean an additional 1.12 km length per direction for the IPTN route, which may not be operationally acceptable.

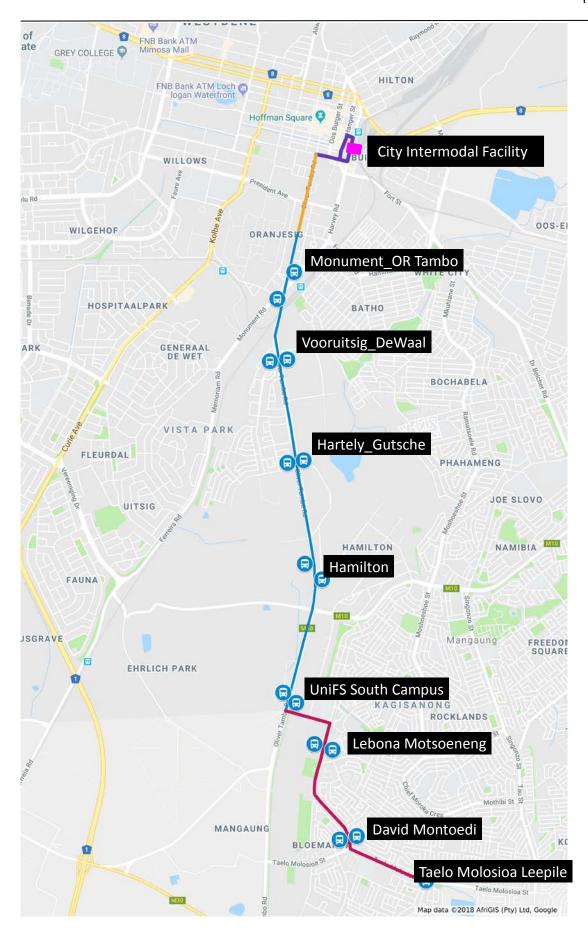


Figure 13:Phase 1 Oliver Tambo Route and Station locations PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

6.2.6 Lebona Motsoeneng Station

Lebona Motsoeneng- for the northbound and southbound station, the bus can stop in the lane. This station has been placed purposely to serve the Mateo FET College. It is proposed to provide the northbound stop north of the vehicular College access and the southbound station south of the access. A pedestrian crossing (midbolock yield-controlled should be located just south of the southbound station.

6.2.7 David Montoedi Station

David Montoedi Stations- for the northbound and southbound station, the bus can stop in the lane. This north east corner property is currently vacant and may be an ideal land-use opportunity for a community facility with the IPTN station nearby. It would be preferable to place both stations well south of the bend in the road, and closer to the intersection, so that vehicles passing the stationary bus can see the opposing traffic properly before the bend in the road.

6.2.8 Taelo Molosioa Leepile Station

Taelo Molosioa Leepile Station- this is a turn-around station and the in principle this will be a IPTN bus terminal. It is envisaged that the eastbound bus will turn right (south) into the Leepile Street and then right again into a terminal/transfer facility on the vacant corner property. The bus station will be separated by a wide walkway/waiting area at which any potential taxi transfers can take place without bus and taxi mixing.

It is highly unlikely that the traffic from the south along Leepile Street will increase as the residential area is well established. This means that the right turn for the bus will not encounter any higher traffic growth that it should cross. Nevertheless, Leepile Street should have a local widening with an exclusive right turn lane southbound for the bus to wait for a gap.

The IPTN bus will the exit onto Taelo Molosioa Street as a left turn yield control in order to proceed westbound.

Figure 14: Concept Layout of Oliver Tambo Route Turnaround/Transfer facility PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

7 RATIONALIZATION OF PEDESTRIAN CROSSINGS

7.1 PEDESTRIAN CROSSING NECESSITY EVALUATION

In general, paved walkways are provided only along the northern part of the route from Monument Road into the CBD. The south part of the road does not have formal pedestrian sidewalk facilities. Pedestrian crossings (6) are provided along Taelo Molosioa Street (1), David Montoedi Street (2), Oliver Tambo Road (2) and St George Street (1).

Many of these have been placed because of a pedestrian desire lines, however, we would have to check the warrants for these crossings in their current positions by undertaking 12-hour pedestrian counts and evaluating the average of the highest 4 hour weekday pedestrian volumes and opposing vehicular traffic volumes warrant as contained in SARB-RR92/126: Pedestrian Facilities Guidelines. Unfortunately, there was not enough time towards the end of the year to undertake these surveys timeously during school terms because of exam writing, so these will be undertaken in 2019 during the new school term.

In general, there will be facilities placed near the Bus Stations, especially to cross Oliver Tambo to access work opportunities on both sides of the corridor. Apart from the first section in the township suburb of JB Mafora and Blomanda, there is generally no need for a sidewalk along the length of Oliver Tambo since pedestrians are walking along the service roads. It may be within the scope of the Oliver Tambo design to provide these service road sidewalks as well. From the intersection of Harvey-Monument Road northwards to the CBD, there is a need to provide paved sidewalks along both sides of Oliver Tambo, St George Street and in all CBD streets where the bus runs, if there are none such sidewalks currently in existence.

Specifically, there is at present a yield-controlled pedestrian crossing on Oliver Tambo Road just south of Nuffield Street. The only significant destination may be the two large industries on the eastern side of Oliver Tambo on Nuffield Street, but the warrant for this pedestrian crossing will need to be confirmed with counts in January 2019.

8 2023 FUTURE TRAFFIC EVALUATION

8.1 MODELLING ASSUMPTIONS

- The future traffic growth on the corridor will be taken up by the increase in Quality Bus (QB) patronage. However, we have modelled the traffic flows including all minibus-taxis. This means that effectively we have modelled a future volume which translates to a 1.8% p.a. growth rate for 10 years.
- The TRANSYT model was broken up into 2 separate sections. Model T1 covers the southern Township section and models Oliver Tambo up to Gutsche-Harvey intersection. Model T2 starts at Oliver Tambo/ Goede Hoop proceeding north to St George Street and Hanger Street/Harvey Street. The route via Harvey Road has also been included in this model as the Phase 1 Fort Hare IPTN joins at the Harvey/Fort Hare intersection. The optimized and coordinated signal timings have been assumed as implemented.
- All the intersection upgrades and signalization as proposed Oliver deemed warranted were modelled to be in place.
- The long-term bus frequency of a bus every 2 minutes Oliver 30 buses per hour was used in the TRANSYT future modelling. The service will start with a bus every 3 minutes Oliver 20 buses per hour.
- Future maximum peak station passenger demand is 300 passengers per hour which translates to 15 passengers per bus. The operations plan forecast corridor peak passenger demand is 1250 passengers per hour.
- The total bus dwell time was calculated using 1,4 seconds per passenger (two loading doors with on board tagging) plus 5 second deceleration and acceleration. This resulted in a dwell time of 25 seconds in the peak direction and 15 seconds in the off-peak direction.

8.2 RESULTS OF 2028 FUTURE TRAFFIC EVALUATION WITH QB

The detailed section, intersection by intersection evaluation results are shown in **Annexure C**. Any intersections with signal control were optimized and co-ordinated with a cycle of 90 seconds for the AM peak and PM peak. The off-peak is anticipated to run at a 60 second cycle for the section near the CBD as with the rest of Bloemfontein CBD, however, because of the 4 phase signal plans, a cycle time of 90 seconds is also deemed to be appropriate.

- 8.2.1 Model T1A: South Section- Taelo Molosioa, David Montoedi, DM Selemela, Oliver Tambo up to the intersection of Gutsche-Hartley (distance 6,47 km with a 3km length of Oliver Tambo posted with a 80km/h speed limit.
- 8.2.2 Model T2(1B): Oliver Tambo Section- from Goede Hoop to St George, Hanger to Douglas Street and back along Harvey Road and St George to Oliver Tambo Street back southwards.

The results of the 2028 TRANSYT intersection evaluations are shown in Annexure D.

8.3 TRAVEL SPEEDS MODELLED AND ACHIEVED

The TRANSYT models allow one to determine the average speed achieved per direction per vehicle class along a defined route. This has been reported for the two separate models for different directions, but no significant difference can be observed between the two directions of travel.

8.3.1 2018 Mixed traffic operating speeds

Table 4: 2018 Results of average speeds along IPTN Phase 1 Oliver Tambo Route

_	G TRAFFIC EVA		2018					
	Dliver Tambo Road AFFIC SPEED OUT							
			AM Peak			PM Peak		
TRANSYT SECTION	Description	Direction	Distance/ (km)	Mixed (km/h)	Time (hrs)	Distance/ (km)	Mixed (km/h)	Time (hrs)
1A	Taelo Molosioa	NB	6,47	60,5	0,107	6,47	62,0	0,104
1B	Oliver Tambo	NB	4,83	45,7	0,106	4,83	49,1	0,098
1A	Taelo Molosioa	SB	6,47	63,0	0,103	6,47	61,1	0,106
1B	Oliver Tambo	SB	4,63	45,3	0,102	4,63	45,4	0,102
TOTAL	1A +1B	NB	11,30	53,2	0,21	11,30	55,7	0,20
TOTAL	1A +1B	SB	11,10	54,2	0,20	11,10	53,4	0,21

8.3.2 2028 Mixed traffic operating speeds

Table 5: 2028 Results of average speeds along IPTN Phase 1 Oliver Tambo Route

FORECAST TRAFFIC EVALUATION 2028 (growth factor 120%)

PHASE 1 Oliver Tambo Road - Average per direction

MIXED TRAFFIC SPEED OUTPUT ACHIEVED

			AM Peak			PM Peak		
TRANSYT SECTION	Description		Distance/ (km)	Mixed (km/h)	Time (hrs)	Distance/ (km)	Mixed (km/h)	Time (hrs)
1A	Taelo Molosioa	NB	6,47	59,4	0,109	6,47	62,0	0,104
1B	Oliver Tambo	NB	4,83	43,6	0,111	4,83	44,6	0,108
1A	Taelo Molosioa	SB	6,47	62,8	0,103	6,47	60,4	0,107
1B	Oliver Tambo	SB	4,63	41,9	0,111	4,63	42,2	0,110
TOTAL	1A +1B	NB	11,30	51,4	0,22	11,30	53,1	0,21
TOTAL	1A +1B	SB	11,10	52,0	0,21	11,10	51,2	0,22

It should be noted that it is understandable that the 2028 speeds are lower than those of 2018 because the traffic is 120% higher along the Oliver Tambo Route.

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

8.3.3 Achieved IPTN Quality Bus speeds including stops.

TRANSYT software is able to model the buses in a shared lane with the mixed traffic and is able to assume a stop dwell time for each station, wherever this occurs on the link.

	ST TRAFFIC EV Dliver Tambo Road				factor 120%	5)		
	FIC SPEED OUTPU							
			AM Peak			PM Peak		
TRANSYT SECTION	Description		Distance/ (km)	Mixed (km/h)	Time (hrs)	Distance/ (km)	Mixed (km/h)	Time (hrs)
1A	Taelo Molosioa	NB	6,47	27,7	0,234	6,47	28,2	0,230
1B	Oliver Tambo	NB	4,83	27,2	0,178	4,83	29,1	0,166
1A	Taelo Molosioa	SB	6,47	31,8	0,203	6,47	23,3	0,277
1B	Oliver Tambo	SB	4,63	23,9	0,193	4,63	21,7	0,214
TOTAL	1A +1B	NB	11,30	27,4	0,41	11,30	28,5	0,40
TOTAL	1A +1B	SB	11,10	28,0	0,40	11,10	22,6	0,49
AVERAG		Р	both direc	tions		22,40	26,43	0,848

 Table 6: 2028 Results of the average IPTN bus travel speeds

The 2028 IPTN bus round trip speed along the Phase 1 Oliver averages 26km/h or takes 51 minutes, which is a little quicker than that estimated in the Phase 1 Operational Plan.

9 CONCLUSIONS

- 1) The existing 2018 traffic evaluation show overall levels of service no worse than LoS C (mostly LoS A and B) with certain turning movements operating at LoS D.
- 2) The upgrading of some of the Oliver Tambo intersections to accommodate the 2028 traffic and Universal Access requirements is significant from DM Selemela Road to Cross Street. The proposed concept layouts with signalized slip lanes and protected right turn phases are depicted in Chapter 5.1.
- 3) For the most part the IPTN bus will be stopping in the trafficked leftmost lane with no layby required for the bus stations.
- 4) For the posted 80km/h section of Oliver Tambo, the bus stations require the provision of a bus layby and these are placed at the far-side of the signalized intersections per direction. The signal plans will then be specifically designed to allow a period of about 10 seconds for the bus to enter the traffic stream during every 90 second cycle.
- 5) The warrants for the existing pedestrian crossings need to be re-evaluated with new traffic counts to be executed in 2019. This will determine the type of control justified for each pedestrian crossing.
- 6) The section of the route from Taelo Molosia/Leepile Street intersection, via David Montoedi Street and DM Selemela Street needs to be provided with barrier curbs and a paved sidewalk between 2to 3m wide on both sides of the road. The current traffic calming should remain in position, however, these may need to be re-constructed to be bus friendly.
- 7) The misbehaviour of the minibus-taxis which causes severe unnecessary congestion needs to be addressed with law enforcement and the physical removal of some of the operating licenses, which will be replaced by the Quality Bus route and services.
- 8) The achieved bus operating speed along the Oliver Tambo corridor is commendable considering the 10 year traffic growth of 1,8% p.a. which results in a flow scaling of 120%. The average round trip bus speed achieved is 26 km/h or 51 minutes excluding the dwell time in the Intermodal facility in the CBD. This is higher than that assumed in the IPTN Phase 1 operations plan, which provides a little leeway for fleet size reduction.

10 RECOMMENDATIONS

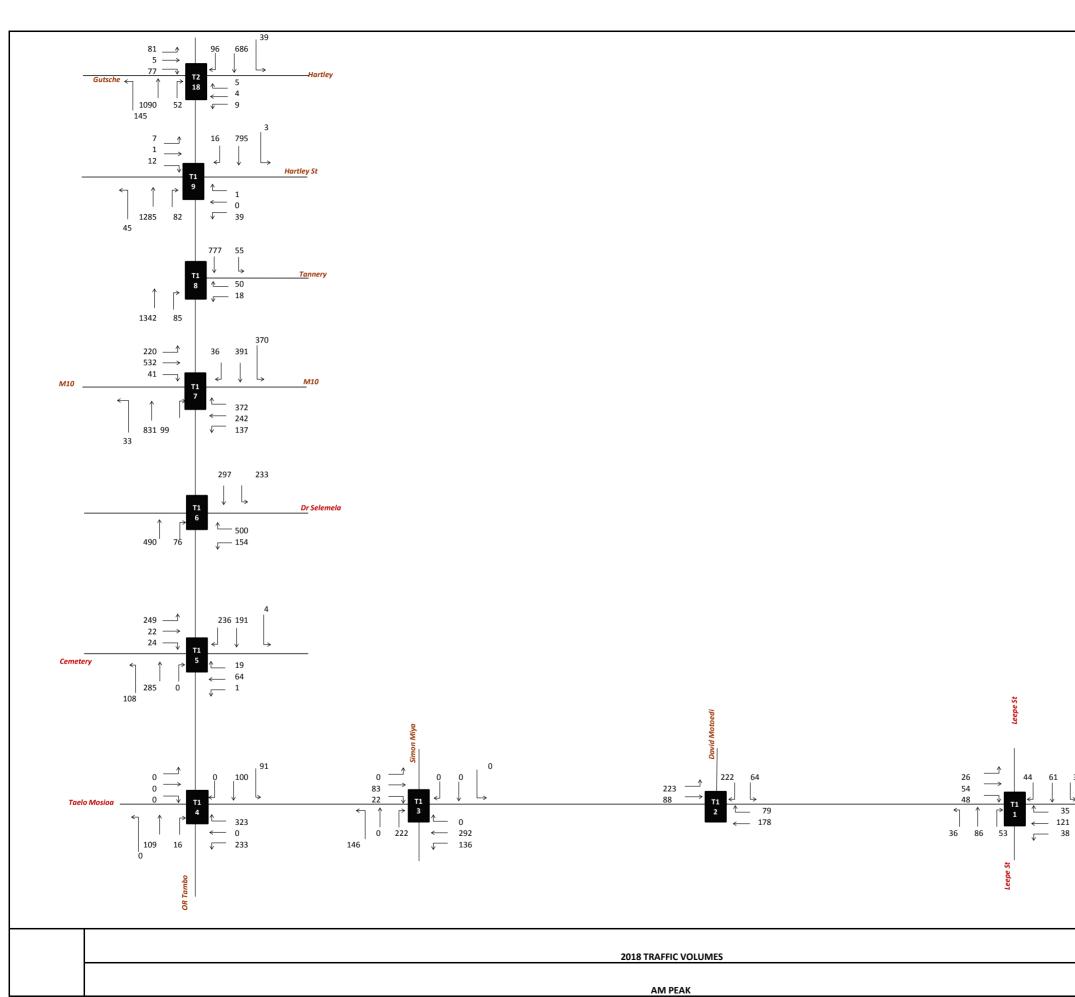
It is recommended that the road and intersection upgrade proposals plus those for the intersection upgrades be accepted as basis for the Oliver Tambo Road design.

PHASE 1 OLIVER TAMBO ROUTE-TRAFFIC ASSESSMENT REPORT FOR THE INTEGRATED TRANSPORT NETWORK PROJECT, MANGAUNG METROPOLITAN MUNICIPALITY

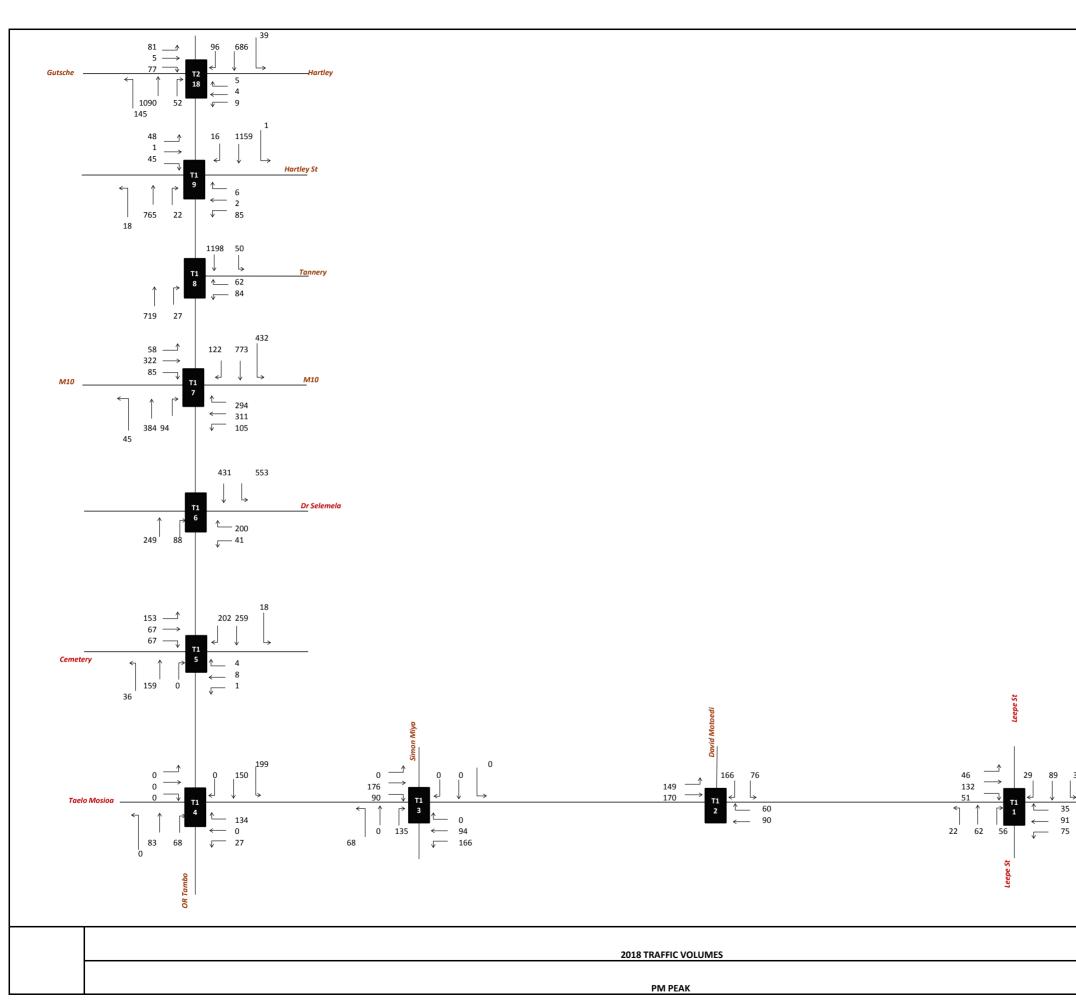
ANNEXURE A –

2018 Phase 1 Corridor Traffic volumes

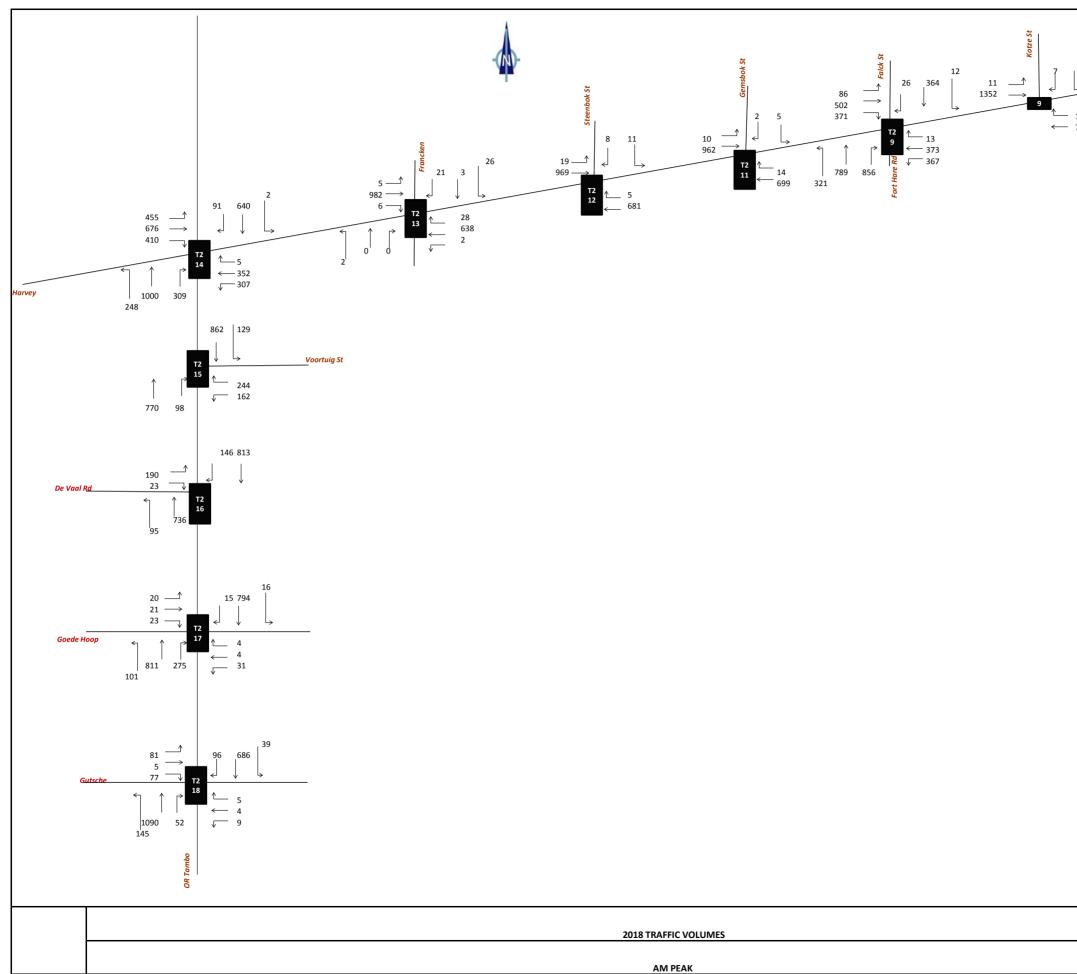
ANNEXURE B -

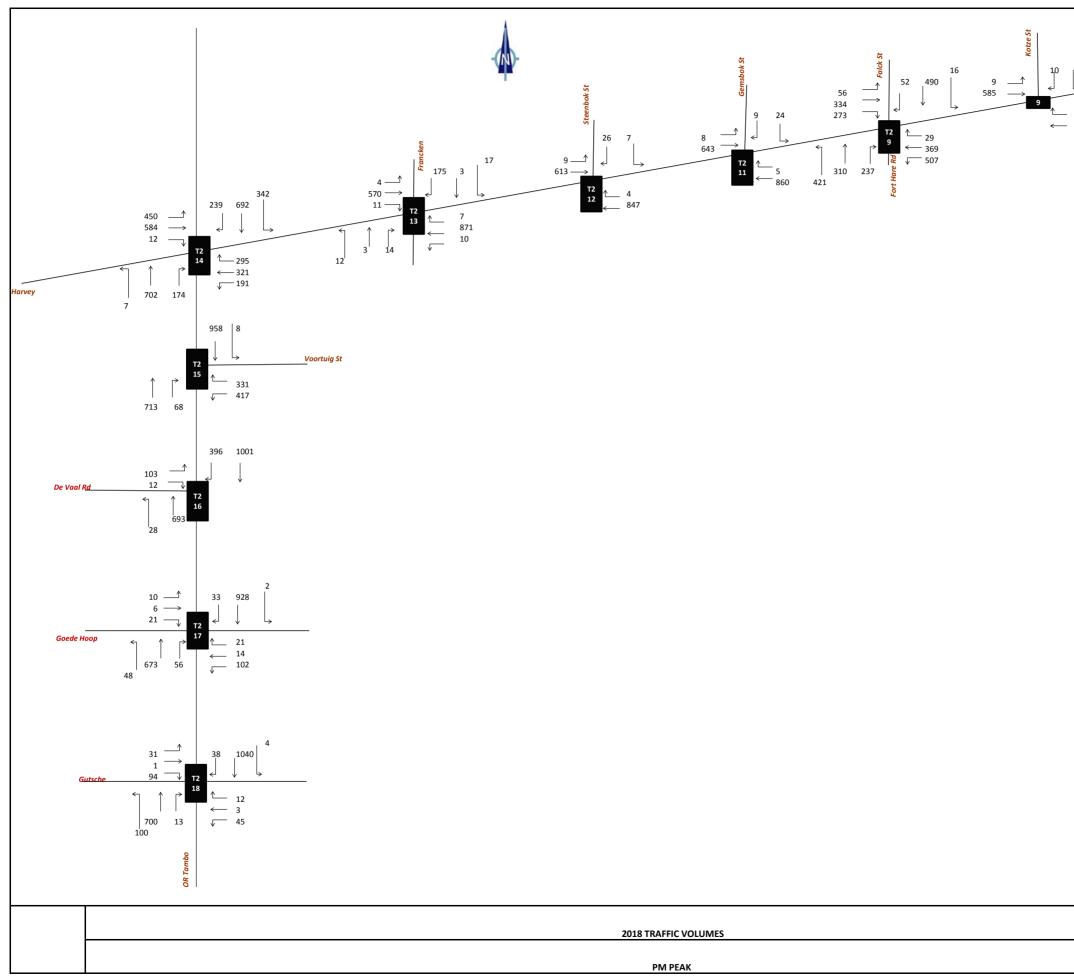

Results of 2018 Existing TRANSYT Traffic Evaluation

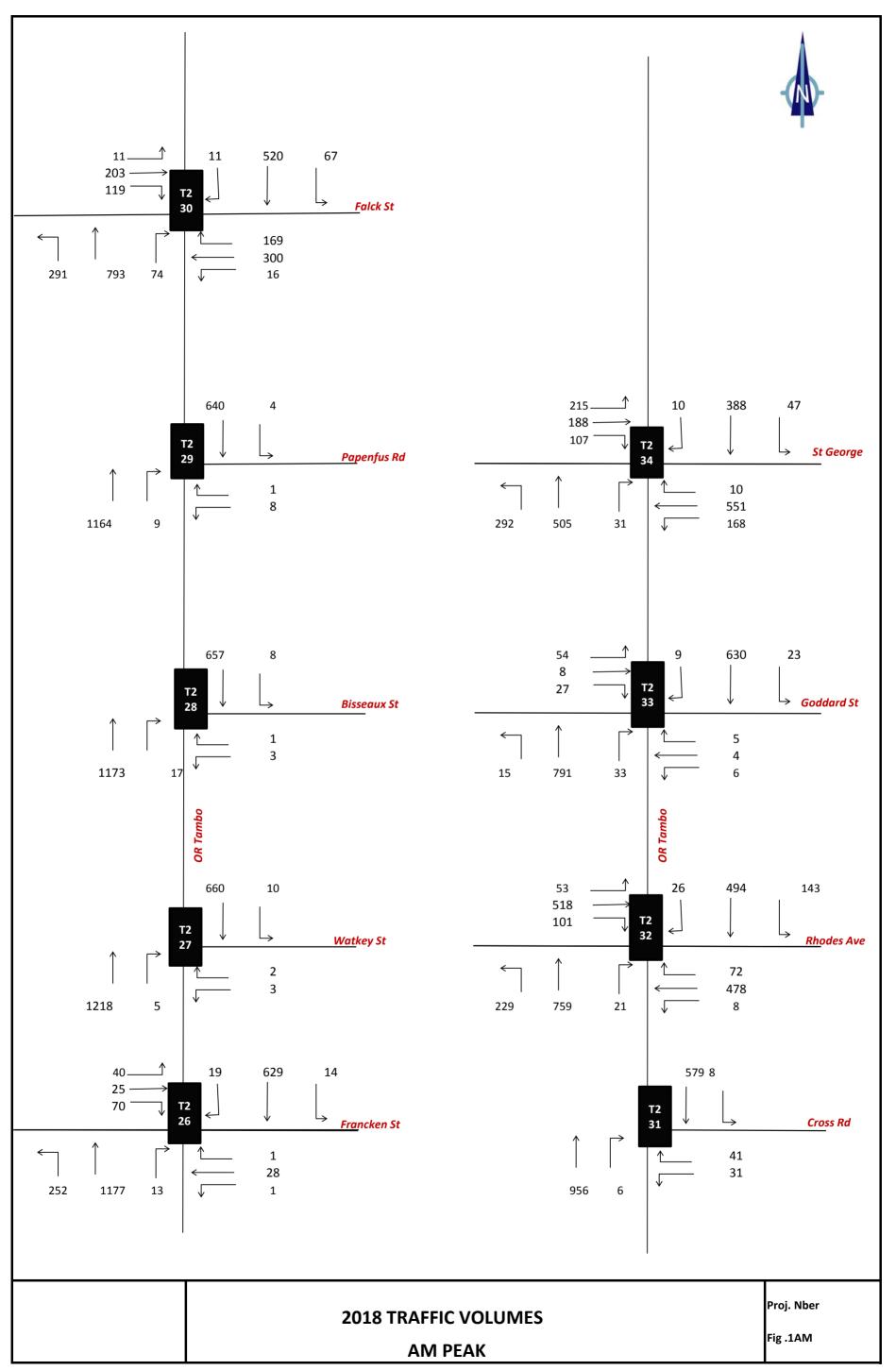
ANNEXURE C – Detailed Results of 2028 Future Traffic Evaluation for key intersection upgrades

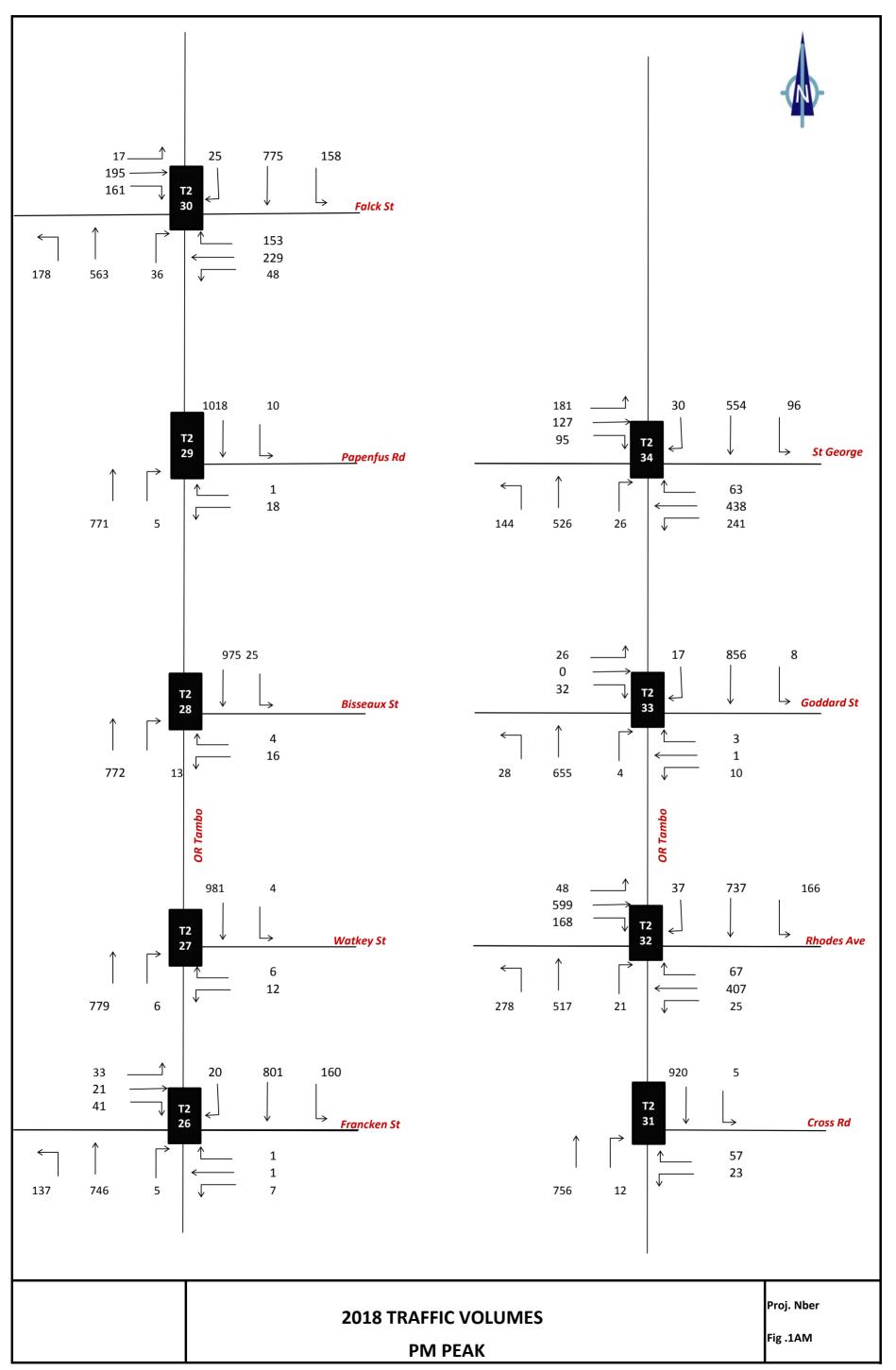

ANNEXURE D – Results of 2028 Future TRANSYT Traffic Evaluation

ANNEXURE A –


2018 Phase 1 Corridor Traffic volumes


-	}
33	
Taelo Molosioa	
	Proj. Nber
	Fig 1AM


-	
1 Taelo Molosioa	
	Proj. Nber
	Fig 1PM


8	223 1037 126	\rightarrow	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	177		
1 764	۲ 14	17 59 59	— ↓	631 90		
					Proj. N	ber
					Fig 1/	M

5	74 574 16		₹ 12 10	197 19 - 233 - 684		
73 878	43 79	114 July 114		- 13		
		R				
					Proj. M Fig 1	
					Fig 1	

R:\Technical\Projects\127 MMM IPTN\17- OR Tambo Corridor\Traffic Study\Traffic Count data\Processed counts v2

R:\Technical\Projects\127 MMM IPTN\17- OR Tambo Corridor\Traffic Study\Traffic Count data\Processed counts v2

ANNEXURE B –

Results of 2018 Existing Traffic Evaluation

Table 1.AM: OR TAMBO/ TAELO MOLOSIOA EXISTING AM PEAK TRANSYT EVALUATION

N 50 Cycle 90

							-		-	Cycle	90
		Flow into	Saturation	Degree of			-		Green Tin	nes (Secs)	
Link	Approach	Link	Flow	Saturation	Delay	Level of	Queue	Performance			Green Time
Number	Movement	(PCU/H)	(PCU/H)	(%)	(sec)	Service	(PCU)	Index (\$/H)	Start	End	(sec)
		(,	(******)	(75)							
102	NLTR	138	712	19	1	Α	0,02	2,33			
205	ET	178	1950	9	0	Α	0	0,46			
108	SLTR	175	962	18	0	А	0,02	2,02			
111	WLTR	128	1950	7	0		0,02	0,23			
T1 1	Taelo Molos			13	0		0,3%		Taelo Mo	05102 & 1	eenile St
				15		<u>^</u>	0,070	5,04	Taclo Mo	103104 0 1	cephe or
000		2000	704	44	0		0.14	44.04			
202	NLR	286	701	41	2	Α	0,14	14,01			
204	ER	79	932	8	0		0	0,39			
205	ET	178	1950	9	0	Α	0	0,46			
211	WLT	311	1950	16	0	Α	0,02	1,51			
T1 2	Taelo Molos	sioa & David	d Montoedi	22	1	Α	1,1%	16,37	Taelo Mo	losioa & D	David
							,	- , -	Montoedi		
302	NLTR	10	633	2	0	Α	0	0,01			
305		428	1950	22	0	Ā			-		
	ELTR						0,03	3,09	-		
308	SLTR	368	671	55	3	A	0,33	33,04			
311	WLTR	105	1950	5	0		0	0,15			
T1 3	Taelo Molos	sioa & Simo	n Miya St	33	1	Α	2,4%	36,29	Taelo Mo	losioa & S	Simon Miya
									St		
402	NTR	100	1950	5	0	Α	0	0,14			
403	NL	91	1750	5	0	Α	0	0,14			
405	ETR	323	976	57	2	A	0,38	21,81	1		
406	EL	233	0	0	2	Ā	0,50	15,73	1		1
					0		0				
408	SLTR WITP	125	3900	3		A		0,05			
411	WLTR	10	951	1	0		0	0,01	L .	<u> </u>	
T1 4	Taelo Molos	sioa & OR T	ambo	22	2	Α	2,5%	37,88	Taelo Mo	losioa & C	OR Tambo
			r								1
501	NR	236	937	25	2	Α	3,44	41,13			
502	NT	191	3900	5	0	Α	0	0,13			
503	NL	4	937	0	0	A	0	0,10			
504	ER	19	995	2	0		0	0,02			1
505	ET	64	995 895	7	0	A	0				
				0				0,28			
506	EL	1	958		0	A	0	0			
507	SR	1	958	0	0	Α	0	0			
508	ST	285	3900	7	0	Α	0	0,29			
509	SL	108	1750	6	0	Α	0	0,2			
510	WR	24	895	3	0	Α	0	0,04			
511	WT	22	895	2	0	Α	0	0,03			
512	WL	249	937	27	1	Α	0,05	4,8			
T1 5	Or Tambo 8			14	1	A	3,1%	46,92	Or Tambo	Acces	s to
		ACCE33 10	Gennetery	14		<u>^</u>	3,170	40,52		, ,	310
000	NT		0000	45	47		5.40	0.40.05	Cemetery	07	
602	NT	292	3900	15	17	В	5,18	240,25	6	37	31
603	NL	233	1317	18	2	Α	2,27	27,66			
604	ER	500	1800	55	10	Α	8,86	219,96	43	0	47
606	EL	154	0	0	10	Α	0	62,92			
607	SR	76	1286	12	16	В	1,15	48,41	6	37	31
608	ST	490	3900	26	14	В	7,12	315,35	6	37	31
T1 6	Or Tambo 8			28	11	В	61,1%	914,55			
110		Divi Selem	cia	20			01,176	514,55			lemena
				10	10						
701	NR	36	656	10	18	В	0,57	25,58	6	37	31
702	NT	391	3900	19	11	В	5,02	233,97	6	37	31
703	NL	370	906	41	3	Α	3,84	60,42			
704	ER	372	974	61	18	В	6,68	275,72	43	0	47
705	ET	242	1950	20	8	Α	2,58	85,44	43	0	47
706	EL	137	1098	12	0	Α	0,24	3,67			
707	SR	99	1110	17	6	А	1,46	27,99	6	37	31
708	ST	831	3900	40	18	B	13,82	655,89	6	37	31
708	SL	33	1084	40	0	A	0,07	0,88		57	31
										-	/-
710	WR	41	679	10	9	A	0,47	16,91	43	0	
711	WT	532	3900	22	8	A	5,79	188,15		0	47
712	WL	220	914	24	6	Α	3,03	74,19			
T1 7	Or Tambo 8	• M10		32	11	В	110,1%	1648,81	Or Tambo	o & M10	
802	NT	777	3900	20	0	Α	0,02	2,48			
803	NL	55	1750	3	0	Α	0	0,05			
804	ER	50	534	13	1	А	0,07	0,88		· · · · · · · · · · · · · · · · · · ·	
806	ER	18	0		1	A	0,01	0,31	1		
807	SR	85	829	10	0	Ā	0,01	0,59			1
808	ST	1342	3900	34	0		0,01	9,02	1		
T1 8	Or Tambo 8			27	0				Or Tambo	L & Tanna	ry St
110		a nannery S	ı	21	0	A	0,9%	13,33		ocianne	iy St
											1
901	NR	16	689	2	0	Α	0	0,03			
902	NT	795	3900	20	0		0,03	2,61			
903	NL	3	996	0	0	Α	0	0			
905	ERT	1	514	0	0	Α	0	0			
906	EL	39	825	5	0	А	0	0,12			
907	SR	82	020	0	0	A	0	0,6			
908	ST	1285	3900	36	0		0,1	9,35	1		
					0						1
909	SL	45	0	0		A	0	0,33			
910	WR	12	0	0	0		0	0,05			
911	WT	1	514	4	0	Α	0	0			
912	WL	7	0	0	0		0	0,03			<u> </u>
T1 9	Or Tambo 8	Hartley St		27	0	Α	0,9%	13,12	Or Tambo	o & Hartle	y St
		•									
		Total				Total	Total		Ī		
Vehicle		Total Distance	Total Time	Mean	Total Delay	Distance	Time		Total Per	formance	Fuel
Туре		Travelled	Spent (PCU-	Journey Speed (km/h)	(PCU-hrs/h)	Travelled	Spent			(\$/H)	Consumption
		(PCU-km/h)	hr/h)	opeea (km/h)		(Pass- km/h)	(Pass-				(l/hr)
Total	L	5141,07	84.00	61.10	1694,43		hr/h)	L	4.40	7,28	400.05
Total NB		5141,07 3719,34	84,02 61,45	61,19 60,52	1694,43 6,43	0	0			7,28 15,8	433,35
	l	1421,73	22,57	63	2,66	U U	v			1,48	
					2.00				40		
SB		1421,70	22,01	00	1					1 -	

Note: - L = Left, T = Through, R = Righturn

C:\Users\AdrianB\Documents\WORK\MMM Traffic Engineering\ORTambo Traffic Counts\TRANSYTExisting Evaluation\EXISTING AM EVALUATION RESULTS 1A

Table 1.PM: OR TAMBO/ TAELO MOLOSIOA EXISTING AM PEAK TRANSYT EVALUATION

N 50 Cycle 90

1.5-1	A	Flow into	Saturation	Degree of	D. I.	1.0.1.1		Dest	Green Tin	nes (Secs)	0
Link Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Tim (sec)
102	NLTR	149	702	21	1	А	0,03	2,86			
205	ET	90	1950	8	0	Α	0	0,19			
108	SLTR	140	702	20	1	A	0,02	2,48			
111	WLTR	229	1950	12 15	0	A A	0,01	0,78	Teele Me		oonilo Ct
T1 1	Taelo Molos				-		0,4%		Taelo Mo		eepne St
202	NLR	242	693	35	1	A	0,09	9,36			
204	ER	60	0	0	0	A	0	0,13			
205 211	ET WLT	90 319	1950 1950	8	0	A A	0,02	0,19			
T1 2	Taelo Molos			20	1	A	0,02	11,28	Taelo Mo	losioa & D	avid
		10							Montoedi		
302 305	NLTR ELTR	10 260	884 1950	1	0	A A	0,01	0,01			
303	SLTR	200	692	29	1	A	0,01	6,15			
311	WLTR	266	1950	14	0	Ā	0,00	1,08			
T1 3	Taelo Molos	sioa & Simo	n Miya St	18	0	Α	0,5%	8,27	Taelo Mo St	losioa & S	imon Miya
402	NTR	150	1950	8	0	А	0	0,32	51		
403	NL	199	1750	11	0	A	0,01	0,73			
405	ETR	134	934	17	0	Α	0,02	1,49			
406	EL	27	0	0	0	Α	0	0,3			
408	SLTR	151	3900	4	0	А	0	0,08			
411 T1 4	WLTR Taelo Molos	10 10 & OR T	934 ambo	1 9	0	A A	0 0,2%	0,01	Taelo Mo	losioa & C	R Tambo
					-				ruelo ino		
501	NR	202	965	21	2	A	3,64	39,12			
502 503	NT NL	259 18	3900 965	7	0	A A	0	0,24		-	-
503 504	ER	18	965	2	0	A	0	0,02		1	
504	ET	8	905	1	0	A	0	0	1	-	-
506	EL	1	943	0	0	A	0	0			
507	SR	1	943	0	0	Α	0	0			
508	ST	159	3900	4	0	Α	0	0,09			
509	SL	36	1750	2	0	Α	0	0,02			
510	WR	67	998	7	0	Α	0	0,24			
511	WT	67	908	7	0	Α	0	0,29			
512 T1 5	WL Or Tamba 9	153	965	16 10	0	A A	0,01	1,49 41,51	Or Tamb	o & Acces	. 4.0
115	Or Tambo 8	ACCESSIO	Cemetery	10	•	^	2,7%	41,31	Cemetery		510
602	NT	431	3900	23	19	В	8,56	410,47	6	37	
603	NL	553	1291	43	12	В	12,7	336,58			
604	ER	200	1800	21	6	A	2,38	59,1	43	0	
606 607	EL SR	49 88	0 634	0	6 21	A C	0 1,55	<u>13,38</u> 71,95	6	37	
608	ST	249	3900	13	13	B	3,4	147,37	6	37	
T1 6	Or Tambo 8	DM Selem	ela	28	14	В	68,4%	1038,85	Or Tambo	o & DM Se	lemela
701	NR	122	611	41	23	С	2,31	108,64	6	37	
702	NT	773	3900	41	15	В	12,38	604,53	6	37	
703	NL	432	1414	31	1	Α	0,55	12,02			
704	ER	294	1246	35	9	Α	3,53	119,1	43	0	
705	ET	311	1950	24	6	Α	3,06	94,63	43	0	
706	EL	105	1193	9	1	A	0,38	7,39	-		
707 708	SR ST	94 384	610 3900	32	17 18	B	1,72	67,8 331,59	6	37 37	-
708	SL	384 45	3900 1379	20	18	A	6,87 0,2	2,39	6	3/	
710	WR	85	1193	11	8	A	0,9	30,51	43	0	
711	WT	322	3900	12	6	Α	2,87	86,72	43	0	
712 T1 7	WL Or Tambo 8	58 M10	1461	4 28	0 10	A B	0,11 96,5%	1,66 1466,98	Or Tambo	0 & M10	
			n								
802 803	NT NL	1198 50	3900	31	0	A A	0,07	6,81			
803	ER	50 62	1750 578	34	2	A	0,19	0,04			
806	ER	84	0	34 0	2	A	0,19	4,13			
807	SR	27	736	4	0	Α	0	0,07			
808 T1 8	ST Or Tambo 8	719 Tannory S	3900	18 25	0	A A	0,02 1,1%	2,08	Or Tambo	2 Ta	rv S+
		. rannery 5	·	25	J		1,170	10,20			.,
901	NR	16	823	2	0	A	0	0,02			
902 903	NT NL	1159 1	3900 990	30 0	0	A A	0,06 0	6,28 0			L
903	ERT	8		1	0	A	0	0,01			
905	EL	85	745	11	0	A	0,01	0,01			
907	SR	22	0	0	0	A	0,01	0,07			
908	ST	765	3900	21	0	Α	0,03	2,55			
909	SL	18	0		0	Α	0	0,06			
910	WR	45	0	0	0	A	0	0,35			
911 912	WT WL	1 48	568 0	8	0	A A	0	0,01			
912 T1 9	Or Tambo 8		. 0	24	0	A A	0,8%		Or Tambo	o & Hartle	y St
/ehicle		Total Distance	Total Time	Mean	Total Delay	Total Distance	Time		Total Per	formance	Fuel
		Travelled (PCU-km/h)	Spent (PCU- hr/h)	Journey Speed (km/h)	(PCU-hrs/h)	Travelled (Pass- km/h)	Spent (Pass- hr/h)			: (\$/H)	Consumpt (I/hr)
Type			60 56	61 50	1533.00	Ο			454	9 49	274
Type Total NB		4278,17 1966,65	69,56 31,72	61,50 62,01	1533,02 2,93	<mark>0</mark> 0	0 0			<mark>9,49</mark> 6,98	374

Note: - L = Left, T = Through, R = Righturn

C:UsersiAdrianBiDocumentsiWORKIMMM Traffic Engineering/ORTambo Traffic Countsi/TRANSYT/Existing Evaluation/EXISTING PM EVALUATION RESULTS 1A

Table 2.AM: Or Tambo/ Harvey & Hanger EXISTING AM PEAK TRANSYT EVALUATION

SU Cycle 90

										Cycle	90
		Flow into	Saturation	Degree of					Green Tin	nes (Secs)	
Link Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
202	NT	363	3900	12	0	Α	0,01	0,61			
203	NL	2	728	0	0		0	0			
204	ER	79	259	31	3		0,07	6,69			
206	EL	50	650	8	0		0	0,32			
207	SR	100	500	20	1	Α	0,02	2,49			
208	ST	1009	3900	28	0		0,06	5,07			
T2 2	Fort Hare &	Mkuhlane		23	0	Α	0,1%	15,18	Fort Hare	e & Mkuhla	ine
501	NR	68	867	13	5	Α	0,42	14,07	80	10	2
502	NTL	465	3900	36	19	В	7,86	278,39	10	40	3
505	ELTR	160	1950	18	15	В	2,38	80,95	45	75	3
507	SR	8	1159	1	7	Α	0,08	2,07	80	10	2
508	ST	1059	3900	74	26	С	25,28	910,72	10		3
510	WR	35	1320	6	16	В	0,53	19,17	45		3
511	WLT	107	1950	12	14	В	1,52	52,02	45	75	3
T2 5	Fort Hare &	Gonyane		53	22	С	8,7%	1357,39	Fort Hare	e & Gonyai	ne
801	NR	45	516	18	37	D	0,94	51,99	79	32	4
802	NT	340	3900	23	10	Α	5,5	115,78	79	32	4
803	NL	495	930	53	9	Α	6,22	157,23			
804	ER	500 <	1008	93	54	D	13,89 +	855,42	32	53	2
805	ET	200	1950	34	26	С	3,98	169,52	53	79	2
806	EL	100	1750	19	24	С	1,86	78,54	53	79	2
807	SR	55	1004	11	14	В	0,47	24,25	79	32	4
808	ST	1100	3900	62	22	С	28,27	846,76	79	32	4
809	SL	20	1750	2	12	В	0,17	7,68	79		4
810	WR	95	1380	13	11	В	1,17	37,06	32	53	2
811	WT	600	2925	68	32	С	13,9	619,88	53	79	2
812	WL	40	1017	4	4	A	0,31	6,49			
T2 8	Fort Hare &	Hamilton R	d	50	20	С	19,1%	2970,6	Fort Hare	e & Hamilto	on Rd
901	NR	26	1135	3	14	В	0,33	14,57	71	16	3
902	NT	364	3900	28	21	С	5,55	267,68	16	39	2
903	NL	12	1750	2	10	В	0,17	4,24	16	39	2
904	ER	13	942	5	47	D	0,31	21,49	45	50	
905	ET	373	3900	39	32	С	8,68	451,03	50	65	1
906	EL	367	1290	35	1	Α	1,08	22,45			
907	SR	856	2394	55	13	В	15,27	543,23	71	16	3
908	ST	789	2400	99	74	E	30,48	1995,02	16	39	2
909	SL	321	1448	22	1	Α	0,81	18,09			
910	WR	371	1888	66	20	С	7,45	327,8	45	50	
911	WT	502	3900	53	22	С	11,46	456,39	50	65	1
912	WL	86	1167	7	12	В	1,5	48,72			
T2 9	Fort Hare &	Harvov		54	27	С	26,8%	4170 71	Fort Hare	& Harvov	

Table 2.AM: Or Tambo/ Harvey & Hanger EXISTING AM PEAK TRANSYT EVALUATION

	30
Cycle	90

1.1.1		Flow into	Saturation	Degree of	D		0	Desta	Green Tin	nes (Secs)	
Link Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
1001	NR	146	1170	25	15	В	1,84	78,64	6	15	
1002	NT	145	1950	19	23	С	2,42	117,51	15	44	2
1003	NL	305	1069	29	6	Α	2,07	77,47			
1004	ER	177	1800	25	16	В	2,68	111,95	50	62	
1005	ET	631	3900	48	28	С	15,86	677,75	62	0	:
1006	EL	90	1344	7	0	Α	0,11	1,42			
1007	SR	17	1451	2	12	В	0,21	8,49	6	15	
1008	STL	73	1950	9	17	В	1,14	49,82	15	44	
1010	WR	126	1053	23	9	Α	1,78	59,83	50	62	
1011	WT	1037	3900	74	13	В	10,87	497,5	62	0	
1012	WL	223	1642	14	0	A	0,03	1,36			
T2 10	Harvey & R	hodes		45	15	В	10,8%	1681,74	Harvey &	Rhodes	
1102	NLR	7	386	2	0	A	0,01	0,21			
1104	ER	14	536	3	0	Α	0	0,04			
1105	ET	699	3900	18	0		0,02	1,96			
1111	WLT	972	3900	25	0	Α	0,04	4,14			
T2 11	Harvey & G	emsbok St		22	0	А	0,0%	6,35	Harvey &	Gemsbok	St
1202	NLR	20	384	5	0	Α	0,04	0,6			
1204	ER	5	389	1	0	Α	0,01	0,11			
1205	ET	681	3900	17	0	Α	0,02	1,85			
1211	WLT	988	3900	25	0	Α	0,04	4,3			
T2 12	Harvey & St	eenbok St		21	0	А	0,0%	6,86	Harvey &	Steenbok	St
1301	NR	21	297	7	2	A	0,09	2,65			
1303	NL	29	535	5	0	A	0,05	0,9			
1304	ER	4	399	1	2		0,03	0,58			
1305	ET	640	3900	16	0		0,02	1,61			
1311	WLT	993	3900	25	0		0,02	4,35			
TO 40	Harvey & Fr							10.00			
T2 13	narvey & Fr	anken St		21	0	Α	0,1%	10,09	Harvey &	Franken s	St
	-		3900								
1902	NT	709	3900	35	9	A	6,96	267,04	6	40	
1902 1903	NT NL	709 713	1750	35 78	9 18	A B	6,96 12,09	267,04 541,27	6	40 40	
1902 1903 1905	NT NL ET	709 713 432	1750 1800	35 78 46	9 18 15	A B B	6,96 12,09 6,91	267,04 541,27 273,15	6	40	
1902 1903 1905 1906	NT NL ET EL	709 713 432 171	1750 1800 908	35 78 46 19	9 18 15 8	A B B A	6,96 12,09 6,91 2,25	267,04 541,27 273,15 65,33	6 6 68	40 40 0	
1902 1903 1905 1906 1907	NT NL ET EL SR	709 713 432 171 284	1750 1800 908 1800	35 78 46 19 30	9 18 15 8 6	A B B A A	6,96 12,09 6,91 2,25 2,09	267,04 541,27 273,15 65,33 70,26	6 6 68	40 40	
1902 1903 1905 1906 1907 1909	NT NL ET EL	709 713 432 171 284 1037	1750 1800 908	35 78 46 19	9 18 15 8	A B B A	6,96 12,09 6,91 2,25	267,04 541,27 273,15 65,33 70,26 1973,19	6 6 68	40 40 0 62	
1902 1903 1905 1906 1907 1909 T2 19	NT NL ET EL SR SL Fort St & Ha	709 713 432 171 284 1037 anger	1750 1800 908 1800 1091	35 78 46 19 30 95 63	9 18 15 8 6 53 25	A B A A D C	6,96 12,09 6,91 2,25 2,09 31,45 20,5%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24	6 68 46 Fort St &	40 40 0 62 Hanger	
1902 1903 1905 1906 1907 1909 T2 19 2004	NT NL ET EL SR SL Fort St & Ha	709 713 432 171 284 1037 anger 278	1750 1800 908 1800 1091 667	35 78 46 19 30 95 63 49	9 18 15 8 6 53 25 9	A B A A D C A	6,96 12,09 6,91 2,25 2,09 31,45 20,5%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84	6 68 46 Fort St & 27	40 40 0 62 Hanger	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008	NT NL ET EL SR SL Fort St & Ha ERT SLT	709 713 432 171 284 1037 anger 278 1287	1750 1800 908 1800 1091 667 5850	35 78 46 19 30 95 63 49 71	9 18 15 8 6 53 25 25 9 32	A B A A C C	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21	6 68 46 Fort St & 27 6	40 40 0 62 Hanger 0 21	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011	NT NL ET EL SR SL Fort St & Ha	709 713 432 171 284 1037 anger 278 1287 351	1750 1800 908 1800 1091 667 5850 3900	35 78 46 19 30 95 63 49	9 18 15 8 6 53 25 9	A B A A D C A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59	6 68 46 Fort St & 27 6 27	40 40 0 62 Hanger	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20	NT NL ET SR SL Fort St & Ha ERT SLT WLT Hanger & S	709 713 432 171 284 1037 anger 278 1287 351 t Georges S	1750 1800 908 1800 1091 667 5850 3900 it	35 78 46 19 30 95 63 71 11 11 57	9 18 15 8 6 53 25 9 32 3 23 23	A B A A C C A C A C	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8	6 68 46 Fort St & 27 6 27	40 40 0 62 Hanger 0 21 0	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108	NT NL ET SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR	709 713 432 171 284 1037 anger 278 1287 351	1750 1800 908 1800 1091 667 5850 3900 it 5850	35 78 46 19 30 95 63 71 11 11 57 22	9 18 15 8 6 53 25 9 32 3 23 23 0 0	A B A A C C A C A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14	6 68 46 Fort St & 27 6 27	40 40 0 62 Hanger 0 21 0	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111	NT NL ET SR SL Fort St & Ha ERT SLT WLT Hanger & S	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87	1750 1800 908 1800 1091 667 5850 3900 it	35 78 46 19 30 95 63 71 11 11 57	9 18 15 8 6 53 25 9 32 3 23 23	A B A A C C A C A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12	6 68 46 Fort St & 27 6 27	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas	1750 1800 908 1800 1091 667 5850 3900 it 5850 731	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 0	A B A A C C A C A A C A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0,1%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 T2 21	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 22 12 21 23	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 2 0	A B A A C C A C A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0,1%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 T2 21	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 21 23 23	9 18 15 8 6 53 25 9 32 3 23 0 2 3 2 3 2 3 0 2 2 0 1 9 2 2 0	A B A A C C A C A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0,1% 0,03 2,88	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 22 12 21 23	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 2 0	A B A A C C A C A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0,1%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 21 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 0 2 3 23 0 1 9 32 3 3 23 0 1 3 3 3 23 3 3 23 3 3 23 3 3 23 3 3 23 2	A B A A C C A C A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0 ,6%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2302	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908 908 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 22 12 21 23 23 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 23 0 2 2 3 1 9 32 3 23 0 1 9 32 3 3 23 0 1 3 9 32 3 3 23 0 0 2 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0	A B A A C C A C A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0 ,6%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2302 2306	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 731 908 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 21 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 0 2 3 23 0 1 9 32 3 3 23 0 1 3 3 3 23 3 3 23 3 3 23 3 3 23 3 3 23 2	A B A A C C A C A A A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0 ,6%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33 <u>5,64</u> 0,15	6 68 46 Fort St & 27 6 27 Hanger &	40 40 0 62 Hanger 0 21 0 s St Georg	
1902 1903 1905 1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 3900 it 908 908 908 908 908 908 908 908	35 78 46 19 30 95 63 49 71 11 57 22 12 23 35 35 36 37 37 38 39 30 30	9 18 15 8 6 53 25 9 32 3 23 0 2 3 23 0 2 3 23 0 1 9 32 3 23 0 1 9 32 3 23 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	A B A A C C A C A A A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0,6% 0,06 0 0,0%	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33 <u>5,64</u> 0,15 5,79	6 6 68 46 Fort St & 27 6 27 Hanger & Hanger & Harvey &	40 40 0 62 Hanger 0 21 0 s St Georg s Douglas Peet Ave Douglas	
1902 1903 1905 1906 1907 1909 T2 19 72 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 it 5850 908 908 908 908 908 908 908 90	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 23 23 23 23 23 23 23 23 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 0 1 9 1 3 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	A B A A C C A A C A A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0 ,6% 0,06 0 0,0% 32,55	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33 5,64 0,15 5,79 1659,79	6 68 46 Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey & 6	40 40 0 62 Hanger 0 21 0 s St Georg St Georg Douglas Peet Ave Douglas	es St
1902 1903 1905 1906 1907 1909 T2 19 72 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23	NT EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pa NLT EL Harvey & Da	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 3900 3900 3908 908 908 908 908 908 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 23 23 23 23 23 23 23 23 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 0 1 9 32 3 23 23 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	A B B A A C C A C A A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0,1% 0,03 0,6% 0,06 0 0,0% 32,55 1,13	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33 5,64 0,15 5,79 1659,79 23,22	6 68 46 Fort St & 27 627 Hanger & Hanger & Harvey & Harvey & 628	40 40 0 62 Hanger 0 21 0 s St Georg s St Georg 5 Douglas Peet Ave Douglas	
1902 1903 1905 1906 1907 1909 T2 19 72 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23	NT NL ET EL SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & D	709 713 432 171 284 1037 anger 278 1287 351 t Georges S 1294 87 ouglas 209 209 209 209 209 209 209 209 209 209	1750 1800 908 1800 1091 667 5850 3900 3900 it 908 908 908 908 908 908 908 908	35 78 46 19 30 95 63 49 71 11 11 57 22 12 21 23 23 23 23 23 23 23 23 23 23 23 23 23	9 18 15 8 6 53 25 9 32 3 23 23 0 0 2 0 1 9 1 3 0 0 2 0 0 2 0 0 1 9 32 33 23 23 23 23 23 23 23 23	A B A A C C A A C A A A A A A A A A A A	6,96 12,09 6,91 2,25 2,09 31,45 20,5% 4,5 30,96 2,48 10,4% 0,03 0,44 0 ,1% 0,03 2,88 0,03 0 ,6% 0,06 0 0,0% 32,55	267,04 541,27 273,15 65,33 70,26 1973,19 3190,24 119,84 1561,21 57,59 1618,8 3,14 10,12 13,26 3,44 88,45 3,44 95,33 5,64 0,15 5,79 1659,79 23,22 23,9	6 6 68 46 Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey & 6 28 28	40 40 0 62 Hanger 0 21 0 s St Georg s St Georg 5 Douglas Peet Ave Douglas	es St

Table 2.AM: Or Tambo/ Harvey & Hanger EXISTING AM PEAK TRANSYT EVALUATION

ອບ

										Cycle	90
		Flow into	Saturation	Degree of					Green Times (Secs)		
Link Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
2502	NRT	1326	5850	23	0	Α	0,03	3,32			
2505	ET	10	714	1	1	A	0,04	0,87			
2506 2510	EL WR	32 17	714 714	4	2	A A	0,15 0,08	3,2 1,58			
	Harvey & Ba		714	22	0	A	0,00		Harvey &	Bastion	
1701	NR	15	799	2	0	А	0	0,02			
1701	NT	794	2687	30	0	A	0,29	10,26			
1703	NL	16	0	0	0	A	0	0,17			
1705	ELTR	39	621	6	0	Α	0	0,21			
1707	SR	275	822	33	1	Α	0,08	8,4			
1708	ST	811	3900	23	0	Α	0,04	3,17			
1709 1711	SL WLTR	101 64	0 621	0 10	0	A	0,01	0,4 0,59			
	Or Tambo 8	-		25	0	A A	0,01 0,1%		Or Tambo	o & Goede	Ноор
1601	NR	146	838	17	0	A	0.02	1 0/			
1601	NR	813	3900	21	0	A	0,02	1,84 2,74			
1608	ST	736	3900	19	0	A	0,03	2,14			
1609	SL	95	1750	5	0	A	0,02	0,16			
1610	WR	23	659	3	0	Α	0	0,06			
1612	WL	190	838	23	1	Α	0,03	3,32			
T2 16	Or Tambo 8	& De Waal R	d	19	0	А	0,1%	10,31	Or Tambo	o & De Wa	al Rd
1502	NT	862	3900	66	33	С	20,49	1079,33		44	2
1503	NL	129	1750	22	20	В	1,69	92,69		44	2
1504	ER	244	1800	26	13	В	3,37	129,73		0	4
1506 1507	EL SR	162 98	1800 870	17 23	12 15	B B	2,13 1,31	80,73 66,24		0 15	4
1507	ST	98 770	3900	39	15	B	12,11	471,33		15	1
	Or Tambo 8			45	22	С	12,3%		Or Tambo		
1401	NR	91	615	44	40	D	2,1	129,31	15	44	2
1402	NT	640	3900	49	27	C	13,84	615,36		44	2
1403	NL	2	1370	0	1	Α	0,01	0,14			
1404	ER	5	1044	1	16	В	0,07	3,36	65	0	2
1405	ET	352	3900	31	37	D	8,21	479,18		0	2
1406	EL	307	1382	22	1	A	0,9	21,82			
1407 1408	SR ST	309		46 68	10 32	A C	1,64	125,24		15 15	1
1408	SL	1000 248	2925 1549	16	<u> </u>	A	23,1 0,15	1213,13 3,74		15	
1410	WR	410	2191	36	13	B	5,57	234,17		0	2
1411	WT	676			30	С	14,91	762,76		0	2
1412	WL	455	1480	31	1	Α	0,07	6,82			
T2 14	Or Tambo 8	& Harvey-Mo	onument	46	21	С	23,1%	3595,03	Or Tambo	o & Harvey	-Monumen
2601	NR	19		3	0	А	0	0,04			
2602	NT	629	3900	16	0	A	0,02	1,59			
2603 2605	NL ERT	14 27	0 544	0 5	0	A A	0 02	0,04			
2605	EL	27	544		0	A A	0,02 0	0,21			
2607	SR	13	859	2	0	A	0	0,01			
2608	SLT	1429	3900	37	0	A	0,11	10,59			
2611	WRT	95	544	25	1	Α	0,27	4,55			
2612	WL	40		0	1	Α	0	1,82			
T2 26	Or Tambo 8	Francken	St	29	0	A	0,1%	18,86	Or Tambo	o & Franck	en St
2702	NT	660		17	0	Α	0,02	1,72			
2703	NL	10	1750	1	0		0	0			
2704	ER	2	587	0	0	A	0	0			
2706	EL	3		1	0	A	0	0			
2707 2708	SR ST	5 1218		1 31	0	A A	0,07	7,09			
	U 1		0000	51	0						
	Or Tambo 8	& Watkev		26	0	Α	0,1%	8.81	Or Tambo	o & Watke	V

Table 2.

AM: Or Tambo/ Harvey & Hanger EXISTING AM PEAK TRANSYT EVALUATION		
	Cycle	

									Green Tin	nes (Secs)	
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
2802	NTL	648	3900	17	0	Α	0,02	1,66			
2806	EL	3	857	0	0	Α	0	0			
2808	ST	1173	3900	30	0	Α	0,06	6,47			
T2 28	Or Tambo 8	& Bisseaux		25	0	Α	0,1%	8,13	Or Tamb	o & Bissea	aux
2902	NLT	644	3900	17	0	Α	0,02	1,63			
2905	ER	9	600	1	0	Α	0	0,01			
2908	SRT	1173	3900	30	0	Α	0,06	6,47			
T2 29	Or Tambo &	Papenfus	St	25	0	А	0,1%	8,11	Or Tambo	o & Papen	fus St
3002	NLTR	598	3900	33	12	В	6,19	279,92	6	35	29
3004	ER	169	1343	18	9	Α	3,78	89,43	41	0	49
3006	ELT	316	3900	12	1	Α	1,7	25,58	41	0	49
3007	SR	74	646	25	27	С	1,26	75,12	6		29
3008	SLT	1084	3900	60	33	С	24,46	1321,23	6		29
3010	WR	119	1232	14	6	A	1,17	35,64	41	0	49
3011 T2 30	WLT Or Tambo 8	214 Ealek St	1950	16 38	5 19	A B	1,86 12,1%	54,35	41 Or Tambe	0 8 Falck	49 St
12 30		A FAICK SL		30	19	В	12,1%	1001,27	Or Tamb		51
3102	NLT	587	1950	30	0	Α	0,06	6,48			
3105	ELR	72	659	11	0		0,01	0,67			
3108 T2 31	SRT Or Tambo 8	964	1950	49 40	3 2	A A	16,78	228,56	Or Tambo	• • Cross	
12 31	Or Tambo a	Cross Ra		40	2	A	1,5%	235,71		o & Cross	Ra
3201	NR	26	200	25	21	С	0,38	20,56	6		34
3202	NT	494	1950	49	15	В	7,87	303,01	6	40	34
3203	NL	143	1573	9	0	Α	0	0,45			
3204	ER	72	873	13	16	В	1,11	46,04	46		44
3205	ELT	486	1950	39	12	В	6,97	253,18	46		44
3207	SR	21	775	5	14	В	0,19	10,64	6		34
3208	ST	759	1950	75	15	B	6,24	396,76	6	40	34
3209 3210	SL WR	229 101	1580 929	14	0 15	A B	0,01 1,62	1,23 64,97	46	0	44
3210	WK	518	929	42	9	A	6,48	218,06	40	0	44
3211	WL	53	941	42		A	0,40	2,32	40	0	
T2 32	Or Tambo 8	Rhodes A	ve	45	11	В	8,5%	1317,22	Or Tamb	o & Rhode	es Ave
3302	NLTR	662	3900	17	0	А	0,02	1,73			
3305	ELTR	15	1950	1	0	A	0,02	0			
3308	SLTR	839		22	0		0,03	2,95			
3311	WLTR	89	1950	5	0	Α	0	0,11			
T2 33	Or Tambo &	Goddard S	St	19	0	А	0,0%	4,79	Or Tambo	o & Godda	ard St
3401	NR	10	810	2	12	В	0,13	4,88	6	46	40
3402	NLT	435	1950	38	11	В	5,79	205,72	6		40
3407	SR	31	949	6	7	Α	0,19	8,36	6	46	40
3408	ST	505	1950		11	В	4,72	223,88	6		40
3409	SL	292	1750	28	5	Α	1,28	57,8	6		40
3410	WR	107	1800	10	9	A	1,22	43,47	52	0	38
3411 T2 34	WLT Or Tambo 8	403 St George	1950 s St	36 35	12 10	B A	5,59 4,8%	202,46 746.57	52 Or Tamb	0 2 & St Geo	
		-					-				-
3502	NLR	350			17	B	5,76	240,31	6		29
3505 3511	ET WT	505 264	1950 1950		17 6	B A	10,83 2,33	392,67 60,05	41	0	49 49
T2 34	Or Tambo &			34	15	B	2,33 10,5%		Or Tambe	-	
Vehicle Type		Total Distance Travelled (PCU-km/h)	Total Time Spent (PCU- hr/h)	Mean Journey Speed (km/h)	Total Delay (PCU-hrs/h)	Total Distance Travelled (Pass-km/h)	Total Time Spent (Pass- br/b)			formance (\$/H)	Fuel Consumption (I/hr)
Total		11447,48	318,79	35,91	20820,87	0	0		1557	71,78	1574,85
NBOT		4000 55	00	AE 60	26.24				000	2 72	000
NBOT Phase1 NB		4020,55 3363,81	88 118,72	45,69 28,34	26,34 48,21					3,72 0,83	326 336
Phase1 SB		1301,59	50,99	25,52	22,35					34,2	144
SBOT		2761,53	61,08	45,21	18,32				251	3,03	222
Other		iah R = Right									

Note: - L = Left, T = Through, R = Righturn

JU 90

Table 4.PM: Or Tambo/ Harvey & Hanger EXISTING PM PEAK TRANSYT EVALUATION

эо 90

		Flow into	Cotunation	Demas of				Green Tim	nes (Secs)		
Link Number	Approach Movement	Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
202	NT	642	3900	19	0	Α	0,02	1,9			
203	NL	79	744	11	1	Α	0,88	3,26			
204	ER	37	349	11	1	Α	0,01	0,63			
206	EL	81	589	14	0	Α	0,01	1,1			
207	SR	29	439	7	0	Α	0	0,23			
208	ST	319	3900	10	0	Α	0,01	0,48			
T2 2	Fort Hare &	Mkuhlane		15	0	Α	0,1%	7,6	Fort Hare	& Mkuhla	ine
501	NR	87	1274	11	2	Α	0,25	7,89	80	10	2
502	NTL	714	3900	52	19	В	11,53	436,53	10	40	3
505	ELTR	52	1950	6	14	В	0,72	24,42	45	75	3
507	SR	11	956	2	10	Α	0,12	3,9	80	10	
508	ST	391	3900	31	19	В	8,22	246,87	10	40	
510	WR	33	1540	5	15	В	0,47	16,17	45	75	;
511	WLT	76	1950	9	14	В	1,06	36,1	45	75	:
T2 5	Fort Hare &	Gonyane		38	17	В	7,4%	771,88	Fort Hare	& Gonyai	ne
801	NR	60	1131	11	21	С	1,05	41,9	79	32	
802	NT	705	3900	42	14	В	13,69	338,78	79	32	
803	NL	325	1649	20	0	Α	0,02	2,42			
804	ER	440	1480	56	16	В	7,07 +	242,53	32	53	:
805	ET	150	1950	26	25	С	2,88	121,47	53	79	
806	EL	100	1750	19	24	С	1,86	78,54	53	79	:
807	SR	50	642	16	20	В	0,54	30,83	79	32	
808	ST	360	3900	24	19	В	9,05	239,69	79	32	
809	SL	10	1750	1	13	В	0,1	4,2	79	32	
810	WR	50	1462	6	10	В	0,6	18,4	32	53	
811	WT	180	2925	21	24	С	3,38	140,63 1,11	53	79	:
812 T2 8	WL Fort Hare &	40 Hamilton F	1447 R d	3 33	1 15	A B	0,1 12,1% 12		Fort Hare & Hamilto		on Rd
-					_		ŕ	-			
901	NR	52		5	4	A	0,24	10,2	71	16	
902	NT	490	3900	38	17	B	6,89	299,85	16	39	
903	NL	16	1750	3	9	A	0,25	5,12	16	39	
904	ER	29	1173	8	43	D	0,69	44,44	45	50	
905	ET	369	3900	39	39	D	8,96	519,43	50	65	
906	EL	507	1366	44 20	2	A	9,94 +	86,78	74	40	
907	SR ST	237	2283		4	A	2,63 4,15	60,86	71 16	16 39	
908	SL	310	2400	39 27		B	,	180,82	16	39	
909	SL WR	421	1555	48	1 19	A B	5,04	48,4	45	E0	
910 911	WR WT	275	1892			B C	5,35	223,34	45	50	
911 912	WL	334 56	3900 1449	35 4	<u>21</u> 1	A	7,21 0,22	295,22 2,74	50	65	
912		Harvey	1449	35	14	B	0,22 17,0%	2,74 1777,2			

Table 4.PM: Or Tambo/ Harvey & Hanger EXISTING PM PEAK TRANSYT EVALUATION

	30
Cycle	90

		Flow into	Saturation	Degree of					Green Tin	nes (Secs)	
Link Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Time (sec)
1001	NR	273	1487	37	16	В	3,94	161,79	6	15	
1002	NT	19	1950	2	21	С	0,32	13,87	15	44	2
1003	NL	197	1241	16	1	Α	0,64	15,21			
1004	ER	233	1800	32	9	Α	2,81	95,01	50	62	
1005	ET	684	3900	51	33	С	17,91	857,38	62	0	
1006	EL	13	1690	1	0	Α	0	0			
1007	SR	114	1663	14	12		1,53	59,17	6	15	
1008	STL	122	1950	16	18		1,95	86,16	15	44	
1010	WR	16	1027	3	8		0,14	6,46	50	62	
1010	WT	574	3900	44	6		4,57	124,76		02	
1011	WL	74	1595	5	0		0,02	0,32	02	0	
	Harvey & R		1000	37	16		13,6%		Harvey &	Rhodes	
1102	NLR	33	668	5	0	Α	0	0,13			
1104	ER	5	457	1	0		0	0,01			
1105	ET	860	3900	22	0		0,03	3,12			
1100	WLT	651	3900	17	0		0,00	1,67			
	Harvey & G		0000	19	0		0,0%	,		Comebok	C1
1211	naivey a G	emsbok St		19	U		0,0%	4,93	пагуеу о	Gemsbok	. 51
1202	NLR	33	427	8	0		0	0,32			
1204	ER	4	463	1	0		0	0			
1205	ET	847	3900	22	0		0,03	3,01			
1211	WLT	622	3900	16	0		0,02	1,51			
T2 12	Harvey & St	eenbok St		19	0	Α	0,0%	4,84	Harvey &	Steenbok	St
1301	NR	175	296	59	12	В	2,21	84,64			
1303	NL	20	871	2	0	Α	0	0,03			
1304	ER	7	471	1	0	Α	0	0,01			
1305	ET	881	3900	23	0	Α	0,03	3,3			
1311	WLT	585	3900	15	0	Α	0,01	1,32			
T2 13	Harvey & Fr	anken St		24	1	Α	0,9%	89,3	Harvey &	Franken S	St
1902	NT	621	3900	30	5	Α	3,13	125,23	6	40	
1903	NL	800	1750	88	20	В	19,93 +	639,88	6	40	
1005	ET	489	1950	48	15		7,96	313,41	68	0	
1905				27	2		1,61	35,42			
1905 1906	FI	312	1173					00, IZ			
1906	EL	312	1173 1488				6.87	364.46	46	62	
1906 1907	SR	272	1488	57	36	D	6,87 15.06	364,46 680,21	46	62	
1906 1907 1909		272 651					6,87 15,06 20,7%	680,21	46 Fort St &		
1906 1907 1909 T2 19	SR SL Fort St & Ha	272 651 anger	1488 1009	57 65 57	36 26 17	D C B	15,06 20,7%	680,21 2158,61	Fort St &	Hanger	
1906 1907 1909 T2 19 2004	SR SL Fort St & Ha	272 651 anger 152	1488 1009 1147	57 65 57 16	36 26 17 14	D C B B	15,06 20,7% 2,64	680,21 2158,61 94,91	Fort St & 27	Hanger 0	
1906 1907 1909 T2 19 2004 2008	SR SL Fort St & Ha ERT SLT	272 651 anger 152 1052	1488 1009 1147 5850	57 65 57 16 58	36 26 17 14 26	D C B B C	15,06 20,7% 2,64 20,53	680,21 2158,61 94,91 1044,15	Fort St & 27	Hanger 0 21	
1906 1907 1909 T2 19 2004 2008 2011	SR SL Fort St & Ha	272 651 anger 152 1052 499	1488 1009 11147 5850 3900	57 65 57 16 58	36 26 17 14	D C B B C A	15,06 20,7% 2,64	680,21 2158,61 94,91 1044,15 68,18	Fort St & 27 6 27	Hanger 0	es St
1906 1907 1909 T2 19 2004 2008 2011	SR SL Fort St & Ha ERT SLT WLT	272 651 anger 152 1052 499	1488 1009 1147 5850 3900 St	57 65 57 16 58 15	36 26 17 14 26 2	D C B C A B	15,06 20,7% 2,64 20,53 3,48	680,21 2158,61 94,91 1044,15 68,18 1112,33	Fort St & 27 6 27	Hanger 0 21 0	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20	SR SL Fort St & Ha ERT SLT WLT Hanger & S	272 651 anger 152 1052 499 t Georges S	1488 1009 1147 5850 3900 St 5850	57 65 57 16 58 15 42 18	36 26 17 14 26 2 18	D C B C A B A	15,06 20,7% 2,64 20,53 3,48 10,7%	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07	Fort St & 27 6 27	Hanger 0 21 0	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR	272 651 anger 152 1052 499 t Georges S 1075 83	1488 1009 1147 5850 3900 St 5850	57 65 57 16 58 15 42 18	36 26 17 14 26 2 18	D C B C A B A A A	15,06 20,7% 2,64 20,53 3,48 10,7%	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4	Fort St & 27 6 27	Hanger 0 21 0 • St Georg	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas	1488 1009 1147 5850 3900 St 5850 775	57 65 57 16 58 15 42 18 11 17	36 26 17 14 26 2 18 0 1 0 1 0	D C B C A B A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1%	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47	Fort St & 27 6 27 Hanger &	Hanger 0 21 0 • St Georg	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209	1488 1009 1147 5850 3900 3 t 5850 775 954	57 65 57 16 58 15 42 18 11 17 22	36 26 17 14 26 2 18 0 1 0 1 0	D C B C A B A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07	Fort St & 27 6 27 Hanger &	Hanger 0 21 0 • St Georg	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209	1488 1009 1147 5850 3900 3t 5850 775 954 954	57 65 57 16 58 15 42 18 11 17 22 22	36 26 17 14 26 2 18 0 1 0 1 0 1 1	D C B C A B A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,03	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07	Fort St & 27 6 27 Hanger &	Hanger 0 21 0 • St Georg	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954	57 65 57 16 58 15 42 18 11 17 22	36 26 17 14 26 2 18 0 1 0 1 0	D C B C A B A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89	Fort St & 27 6 27 Hanger &	Hanger 0 21 0 s St Georg	es St
1906 1907 1909 T2 19 2004 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954 954 954 781	57 65 57 16 58 15 42 18 11 11 17 22 22 22 27 24	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1	D C B C A B A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,05 0,1%	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03	Fort St & 27 6 27 Hanger & Hanger &	Hanger 0 21 0 s St Georg	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2302	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954 954 954 781 3900	57 65 57 16 58 15 42 18 11 17 22 22 22 27 27 24 13	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 0 0	D C B C A B A A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,03 0,05	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03	Fort St & 27 6 27 Hanger & Hanger &	Hanger 0 21 0 s St Georg	es St
1906 1907 1909 T2 19 2004 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954 954 954 781 3900	57 65 57 16 58 15 42 18 11 11 17 22 22 22 27 24	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1	D C B C A B A A A A A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,05 0,1% 0,01	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03 1,03 0,18	Fort St & 27 6 27 Hanger & Hanger &	Hanger 0 21 0 st Georg Douglas Peet Ave	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & D	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954 954 954 781 3900 885	57 65 57 16 58 15 42 18 11 17 22 22 27 27 24 13 6 12	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0	D C B C A B A A A A A A A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,05 0,1% 0,01 0,0%	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03 1,03 0,18 1,21	Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey &	Hanger 0 21 0 st Georg Douglas Douglas	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & De NLT	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209 209 209 209	1488 1009 1147 5850 3900 3 t 5850 775 954 954 954 781 3900 885 3900 885	57 65 57 16 58 15 42 18 11 17 22 22 27 27 24 13 6 12 53	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 26	D C B C A B A A A A A A A A A A A A C	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,03 0,05 0,1% 0,01 0,00% 19,5	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03 0,18 1,21 985,29	Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey & 6	Hanger 0 21 0 st Georg Douglas Douglas 22	es St
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & De NLT EL	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209 209 209 209	1488 1009 11147 5850 3900 30 5 5 5850 775 954 954 954 954 781 3900 885 3900 885 5850 1950	57 65 57 16 58 15 42 18 11 17 22 22 27 24 24 13 6 12 53 7	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0	D C B C A A B A A A A A A A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,03 0,05 0,1% 0,01 0 0,0% 19,5 0,44	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03 0,18 1,21 985,29 9,34	Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey & 6 28	0 21 0 21 0 St Georg Douglas Peet Ave Douglas 22 0	
1906 1907 1909 T2 19 2004 2008 2011 T2 20 2108 2111 T2 21 2202 2206 2210 T2 22 2306 T2 23 2306 T2 23 2402 2405 2411	SR SL Fort St & Ha ERT SLT WLT Hanger & S SLTR WLT Hanger & D NT EL WR Harvey & Pe NLT EL Harvey & De NLT	272 651 anger 152 1052 499 t Georges S 1075 83 ouglas 209 209 209 209 209 209 209 209 209 209	1488 1009 11147 5850 3900 30 5 8 5850 775 954 954 954 781 3900 885 3900 885 5850 1950 3900	57 65 57 16 58 15 42 18 11 17 22 22 27 24 24 13 6 12 53 7	36 26 17 14 26 2 18 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 26	D C B C A A B A A A A A A A A A A A A A A	15,06 20,7% 2,64 20,53 3,48 10,7% 0,02 0,28 0,1% 0,03 0,03 0,03 0,05 0,1% 0,01 0,00% 19,5	680,21 2158,61 94,91 1044,15 68,18 1112,33 2,07 5,4 7,47 3,07 3,07 4,89 11,03 0,18 1,21 985,29 9,34 37,04	Fort St & 27 6 27 Hanger & Hanger & Harvey & Harvey & 6 28 28	Hanger 0 21 0 st Georg Douglas Douglas 22	

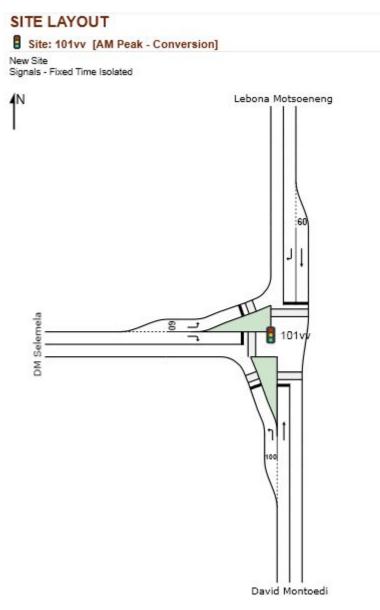
Table 4.PM: Or Tambo/ Harvey & Hanger EXISTING PM PEAK TRANSYT EVALUATION

ອບ

90	Cycle										
	Green Times (Secs)		•			Datas I.	Degree of	Saturation	Flow into		
Green Tim (sec)	End	Start	Performance Index (\$/H)	Queue (PCU)	Level of Service	Delay (sec)	Saturation (%)	Flow (PCU/H)	Link (PCU/H)	Approach Movement	Link Number
			3,32	0,03	Α	0	23	5850	1325	NRT	2502
			0,41	0,03	A	1	1	719	10	ET	2505
			4,18 2,57	0,23 0,16	A A	1 1	10 7	719 719	74 51	EL WR	2506 2510
	Bastion	Harvey &	,	0,1%	A	0	22	113		Harvey & B	T2 25
			0,08	0	А	0	4	852	33	NR	1701
			20,38	0,64	A	0	35	2650	928	NT	1701
			0,05	0	A	0	0	0	2	NL	1703
			2,84	0,03	Α	1	21	647	137	ELTR	1705
			0,27	0	Α	0	7	795	56	SR	1707
			1,8	0,02	Α	0	17	3900	673	ST	1708
			0,04	0	A	0	3	1750 647	48	SL WLTR	1709 1711
Ноор	o & Goede	Or Tambo	,	0,2%	A A	0	25		-	Or Tambo 8	T2 17
			194,69	9.54 +	А	8	47	848	396	NR	1601
			4,43	9,54 + 0,04	A	0 0	26	3900	1001	NR	1601
			1,92	0,04	A	0	18	3900	693	ST	1602
			0,01	0	A	0	2	1750	28	SL	1609
			0,02	0	Α	0	2	627	12	WR	1610
			0,84	0,01	Α	0	12	848	103	WL	1612
l Rd	o & De Wa	Or Tambo	201,91	1,9%	Α	2	26	d	& De Waal R	Or Tambo 8	T2 16
	44	15	1454,91	24,25	D	42	74	3900	958	NT	1502
	44	15	2,62	0,05	Α	9	1	1750	8	NL	1503
	0	44	189,89	4,88	В	14	35	1800	331	ER	1504
	0	44	259,39	6,55	В	15	44	1800	417	EL	1506
	15 15	0	34,74 427,28	0,87 11	B B	12 14	9 37	1487 3900	68 713	SR ST	1507 1508
sig	o & Voorui		,	22,7%	C	25	51			Or Tambo 8	T2 15
	4.4	45	040.07			07	64	4447	000	ND	1 4 0 4
	44 44	15 15	319,97 684,29	5,5 14,97	D C	37 28	64 53	1117 3900	239 692	NR NT	1401 1402
		10	29,28	1,97	A	20	24	1407	342	NL	1402
	0	65	248,13	5,38 +	С	20	51	1115	295	ER	1404
	0	65	421,52	7,44	D	36	28	3900	321	ET	1405
	0	00	121,02				12	1564	191	EL	1406
	0	00	0,85	0,01	Α	0			4 - 4		
	15	0	0,85 60,57	0,86	Α	8	27	1276	174	SR	1407
			0,85 60,57 733,72	0,86 15,21	A C	8 27	27 48	2925	702	ST	1408
	15 15	0	0,85 60,57 733,72 0,05	0,86 15,21 0	A C A	8 27 0	27	2925 1567	702 7	ST SL	1408 1409
	15 15 0	0 0 65	0,85 60,57 733,72 0,05 5,73	0,86 15,21 0 0,14	A C A B	8 27 0 11	27 48 0 1	2925 1567 2226	702 7 12	ST SL WR	1408 1409 1410
	15 15	0 0 65 65	0,85 60,57 733,72 0,05 5,73 629,54	0,86 15,21 0 0,14 12,44	A C A B C	8 27 0 11 28	27 48 0 1 52	2925 1567 2226 3900	702 7 12 584	ST SL WR WT	1408 1409 1410 1411
	15 15 0	0 0 65 65	0,85 60,57 733,72 0,05 5,73 629,54 91,44	0,86 15,21 0 0,14	A C A B	8 27 0 11	27 48 0 1	2925 1567 2226 3900 1247	702 7 12 584 450	ST SL WR	1408 1409 1410
	15 15 0 0	0 0 65 65	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09	0,86 15,21 0 0,14 12,44 3,48	A C A B C A	8 27 0 11 28 4	27 48 0 1 52 36	2925 1567 2226 3900 1247 Drument	702 7 12 584 450	ST SL WR WT WL	1408 1409 1410 1411 1412
	15 15 0 0	0 0 65 65	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09	0,86 15,21 0 0,14 12,44 3,48 30,9%	A C A B C A C	8 27 0 11 28 4 21	27 48 0 1 52 36 43	2925 1567 2226 3900 1247 onument	702 7 12 584 450 & Harvey-Mo	ST SL WR WT WL Or Tambo 8	1408 1409 1410 1411 1412 T2 14
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,04	A A B C A C A A A A	8 27 0 11 28 4 21 0 0 0 0	27 48 0 1 52 36 43 2 2 25 0	2925 1567 2226 3900 1247 onument 806 3900 0	702 7 12 584 450 & Harvey-Mo 20 801 160	ST SL WR WT Or Tambo 8 NR NT NL	1408 1409 1410 1411 1412 T2 14 2601 2602 2603
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,04 0 0 0,04	A A B C A C C A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 25 0 1	2925 1567 2226 3900 1247 onument 806 3900 0 594	702 7 12 584 450 & Harvey-Mo 20 801 160 1	ST SL WR WT Or Tambo 8 NR NT NL ERT	1408 1409 1410 1411 1412 T2 14 2601 2602 2603 2605
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,0,4 0 0 0,04 0 0 0 0	A A B C A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 25 0	2925 1567 2226 3900 1247 onument 806 3900 0 594 0	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 1 160 1 7	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL	1408 1409 1410 1411 1412 T2 14 2601 2602 2603 2605 2606
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,04 0 0 0,04 0 0 0 0 0	A B C A C A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 0 789	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 10 160 1 7 5	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR	1408 1409 1410 1411 1412 T2 14 2601 2602 2603 2605 2606 2607
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,0,4 0 0 0,04 0 0 0 0 0 0 0 0 0 0,03	A B C A C C A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 23	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 160 1 160 1 7 5 883	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR SLT	1408 1409 1410 1411 1412 T2 14 2601 2603 2605 2606 2607 2608
	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,04 0 0 0,04 0 0 0 0 0	A B C A C A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 0 789	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 1 160 1 160 1 7 5 883 62	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR	1408 1409 1410 1411 1412 T2 14 2601 2603 2605 2606 2607 2608 2607 2608
Monumer	15 15 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01 0 0,01 0,01 0,03	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0,0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C C A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 1 23 16	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 0	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 1 160 1 1 60 1 5 883 62 33	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR SLT WRT	1408 1409 1410 1411 1412 T2 14 2601 2603 2605 2606 2607 2608
Monumer	15 15 0 0 0 0 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01 0,01 0,01 8,9 0,53 8,9	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C A A A A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 2 3 16 0 0 21	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 594 0 594 0 594	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 0 8 1 160 1 1 60 1 5 8 83 62 33 & Francken	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR SLT WRT WL Or Tambo 8	1408 1409 1410 1411 T2 14 2601 2602 2603 2605 2606 2607 2608 2611 2612 T2 26
Monumer	15 15 0 0 0 0 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01 0 0,01 0,01 0,03	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C C A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 1 23 16 0 0	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 0	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 1 160 1 1 60 1 5 883 62 33	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT NL ERT EL SR SLT SLT WRT WL	1408 1409 1410 1411 1412 T2 14 2601 2603 2605 2606 2607 2608 2607 2608 2611
Monumer	15 15 0 0 0 0 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,011 0 0,011 0 0,011 0 0,03 3,31 0,99 0,53 8,9	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C A A A A A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 1 23 16 0 0 21 25	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 594 0 594 0 594 0 594 0 594	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 0 8 1 160 1 1 60 1 1 5 8 83 62 33 8 & Francken 981	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT ERT EL SR SLT WRT WL Or Tambo 8 NT	1408 1409 1410 1411 T2 14 2601 2603 2605 2606 2607 2608 2611 2612 T2 26 2702
Monumer	15 15 0 0 0 0 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0,01 0,01 0,01 0,01 0,03 3,31 0,99 0,53 8,9 4,23 0,0	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C C A A A A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 1 23 16 0 0 21 25 0 0	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 Harvey-Mo 8 1 160 1 1 7 5 883 62 33 8 Francken 981 4	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NT ERT EL SR SLT WRT WL Or Tambo 8 NT NL ER EL	1408 1409 1410 1411 72 14 2601 2603 2605 2606 2607 2608 2611 2612 72 26 2702 2703 2704 2704
Monumer	15 15 0 0 0 0 0 0	0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0 0,01 0,01 0,01 0,03 3,31 0,99 0,53 8,9 4,23 0 0 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0,03 0,02 0 0 ,1% 0,04 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C A C A A A A A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 23 16 0 21 25 0 0 1 1 25 0 0 1 1 21 25 0 1 1	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 789 3900 1750 613 784 784	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 Harvey-Mo 100 11 7 5 883 62 33 & Francken 981 4 6 12 6	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NL ERT EL SR SLT WRT WL Or Tambo 8 NT NL ER EL SR	1408 1409 1410 1411 72 14 2601 2602 2603 2605 2606 2607 2608 2611 2612 72 26 2702 2703 2704 2704 2706 2707
Monumer en St	15 15 0 0 0 0 0 0	0 0 0 65 65 Or Tambo	0,85 60,57 733,72 0,05 5,73 629,54 91,44 3225,09 0,03 3,36 0,67 0 0 0,01 0,01 0,01 0,03 3,31 0,99 0,53 8,9 4,23 0 0 0,01 0,01	0,86 15,21 0 0,14 12,44 3,48 30,9% 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0	A C A A C A A A A A A A A A A A A A A A	8 27 0 11 28 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 48 0 1 52 36 43 2 2 5 0 1 1 0 1 23 16 0 21 25 0 0 1 1	2925 1567 2226 3900 1247 onument 806 3900 0 594 0 789 3900 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 594 0 789 3900 0 594 0 789 3900 0 594 0 789 3900 0 594 0 789 3900 0 594 0 789 3900 3900 0 789 3900 0 789 3900 0 789 3900 0 789 3900 0 789 3900 0 789 3900 594 3900 0 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 789 3900 594 775 775 775 775 775 775 775 775 775 77	702 7 12 584 450 & Harvey-Mo 8 Harvey-Mo 8 Harvey-Mo 100 11 7 5 883 62 33 & Francken 981 4 6 12 6 779	ST SL WR WT Or Tambo 8 Or Tambo 8 NR NL ERT EL SR SLT WRT WL Or Tambo 8 NT NL ER EL SR	1408 1409 1410 1411 1412 T2 14 2601 2603 2605 2606 2607 2608 2611 2612 T2 26 2702 2703 2704 2704

Table 4

4.PM: Or Tambo/ Harvey & Hanger EXISTING PM PEAK TRANSYT EVALUATION	
	Cycle


JU
90

											90
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Green Tin Start	nes (Secs) End	Green Time (sec)
		. ,	. ,								
2802	NTL	1028	3900	26	0	A	0,05	4,72			
2806 2808	EL ST	16 772	774 3900	20	0	A A	0,02	0,02 2,44			
	Or Tambo 8		3300	20	0	A	0,02 0,1%		Or Tambo	o & Bissea	aux
2902	NLT	1028	3900	26	0	A	0,05	4,72			
2905	ER	19	603	3	0	A	0,00	0,05			
2908	SRT	776	3900	20	0	A	0,02	2,47			
T2 29	Or Tambo 8	Papenfus	St	23	0	Α	0,1%	7,24	Or Tambo	o & Papen	fus St
3002	NLTR	958	3900	53	14	В	12,79	535,86	6	35	2
3004	ER	153	1391	16	7	Α	2,4	60,16	41	0	4
3006	ELT	277	3900	10	2	Α	3,51	54,47	41	0	4
3007	SR	36	258	30	31	С	0,67	43,47	6	35	2
3008	SLT	741	3900	41	23	С	15,04	686,36	6	35	2
3010	WR	161	1349	17	7	A	1,72	54,82	41	0	4
3011	WLT	212	1950	11	0	A	0,01	0,66	41	0	4
T2 30	Or Tambo 8	Falck St		36	14	В	13,8%	1435,8	Or Tambo	5 & Falck	St
3102	NLT	925	1950	47	1	Α	0,21	21,38			
3105	ELR	80	628	13	0	Α	0,01	0,93			
3108	SRT	768	1950	39	2	Α	11,66	131,2			
T2 31	Or Tambo 8	Cross Rd		42	1	Α	1,5%	153,51	Or Tambo	o & Cross	Rd
3201	NR	37	807	7	9	Α	0,37	13,98	6	40	3
3202	NT	737	1950	60	11	В	10,47	363,53	6	40	3
3203	NL	166	1236	13	2	Α	0,89	17,13			
3204	ER	67	767	17	36	D	1,64	90,16	46	0	4
3205	ELT	432	1950	42	28	С	10,57 +	488,06	46	0	2
3207	SR	21	554	6	8	<u>A</u>	0,18	6,75	6	40	3
3208	ST	517	1950	42	4	A	1,64	75,74	6	40	3
3209	SL WR	278	1328 942	21 34	3 26	A C	1,52	46,76	46	0	
3210 3211	WT	168 499	942 1950	34 49	20 16	B	3,31 8,14	166,84 322,63	46 46	0	4
3211	WL	499	1153	49	0	A	0,14	0,48	40	0	- 4
	Or Tambo 8	Rhodes A		42	13	В	15,3%	1	Or Tambo	o & Rhode	es Ave
3302	NLTR	881	3900	23	0	Α	0,03	3,3			
3302	ELTR	14	655	23	0	A	0,03	0,02			
3308	SLTR	687	3900		0	A	0,02	1,88			
3311	WLTR	58	655	9	0	A	0,02	0,43			
T2 33	Or Tambo 8	Goddard S	St	20	0	Α	0,1%	5,63	Or Tambo	o & Godda	rd St
3401	NR	30	780	7	13	В	0,39	15,82	6	46	4
3402	NLT	650	1950	57	13	B	10,3	377,33	6	46	4
3407		000									
0407	SR	26	626	7	14	В	0,28	13,6	6	46	4
3408	SR ST	26 526	626 1950	7 46	14 10	B B			6 6	46 46	
							0,28	13,6			4
3408 3409 3410	ST SL WR	526 144 95	1950 1750 1800	46 14 9	10 7 9	B A A	0,28 5,41 1,09 1,09	13,6 225,91 43,82 38,25	6 6 52	46 46 0	4
3408 3409 3410 3411	ST SL WR WLT	526 144 95 308	1950 1750 1800 1950	46 14 9 28	10 7 9 11	B A A B	0,28 5,41 1,09 1,09 3,99	13,6 225,91 43,82 38,25 143,48	6 6 52 52	46 46 0 0	4 4 3 3
3408 3409 3410 3411	ST SL WR	526 144 95 308	1950 1750 1800 1950	46 14 9	10 7 9	B A A	0,28 5,41 1,09 1,09	13,6 225,91 43,82 38,25 143,48	6 6 52	46 46 0 0	4 4 3 3
3408 3409 3410 3411	ST SL WR WLT	526 144 95 308	1950 1750 1800 1950	46 14 9 28 41	10 7 9 11	B A A B	0,28 5,41 1,09 1,09 3,99	13,6 225,91 43,82 38,25 143,48	6 6 52 52	46 46 0 0	4 3 3 orges St
3408 3409 3410 3411 T2 34 3502 3505	ST SL WR WLT Or Tambo 8 NLR ET	526 144 95 308 3 St George 838 374	1950 1750 1800 1950 s St 1950 1950	46 14 9 28 41 73 34	10 7 9 11 11 18 19	B A B B B B B	0,28 5,41 1,09 3,99 8,2% 15,87 7,77	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46	6 52 52 Or Tambo 6 41	46 46 0 0 0 & St Geo	4 4 3 orges St 2 4
3408 3409 3410 3411 T2 34 3502 3505 3511	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 3 St George 838 374 263	1950 1750 1800 1950 s St 1950 1950 1950	46 14 9 28 41 73 34 24	10 7 9 11 11 18 18 19 12	B A B B B B B B	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 52 Or Tambo 6 41 41	46 0 0 & St Geo 35 0 0 0	4 4 3 3 5 orges St 2 4 4
3408 3409 3410 3411 T2 34 3502 3505 3511	ST SL WR WLT Or Tambo 8 NLR ET	526 144 95 308 3 St George 838 374 263	1950 1750 1800 1950 s St 1950 1950 1950	46 14 9 28 41 73 34	10 7 9 11 11 18 19	B A B B B B B	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18 19,6%	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 52 52 Or Tambo 6 41	46 0 0 & St Geo 35 0 0 0	4 4 3 3 5 orges St 2 4 4
3408 3409 3410 3411 T2 34 3502 3505 3511	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 3 St George 838 374 263	1950 1750 1800 1950 s St 1950 1950 1950	46 14 9 28 41 73 34 24	10 7 9 11 11 18 19 12 12 17	B A B B B B B B	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 52 0r Tambo 6 41 41 0r Tambo	46 46 0 0 b & St Gec 35 0 0 0 b & St Gec	4 4 3 3 orges St 2 4 4 orges St Fuel Consumptio (l/hr)
3408 3409 3410 3411 T2 34 3502 3505 3511 T2 34	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 St George 838 374 263 St George Total Distance Travelled	1950 1750 1800 1950 s St 1950 1950 s St Total Time Spent (PCU-	46 14 9 28 41 73 34 24 54 Mean Journey	10 7 9 11 11 11 18 19 12 12 17 Total Delay	B A A B B B B B B B Distance Travelled	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18 19,6% Total Time Spent (Pass-	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 52 Or Tambo 41 41 Or Tambo Total Per Index	46 46 0 0 b & St Gec 35 0 0 b & St Gec formance	4 4 3 3 3 3 9 rges St 2 4 4 9 rges St Fuel Consumptio (l/hr)
3408 3409 3410 3411 T2 34 3502 3505 3511 T2 34 /ehicle Type Total	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 St George 838 374 263 St George Total Distance Travelled (PCU-km/h) 9789,65	1950 1750 1800 1950 s St 1950 1950 1950 s St Total Time Spent (PCU- hr/h) 248,05	46 14 9 28 41 73 34 24 54 54 Mean Journey Speed (km/h) 39,47	10 7 9 11 11 18 19 12 17 Total Delay (PCU-hrs/h) 15302,19	B A A B B B B B B C Total Distance Travelled (Pass-km/h)	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18 19,6% Total Time Spent (Pass- br/h)	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 0r Tambo 6 41 41 0r Tambo Total Per Index 1043	46 46 0 0 b & St Geo 35 0 0 0 b & St Geo formance (\$/H)	4 4 3 3 orges St 2 4 4 orges St Fuel Consumptio (I/hr) 1324,7
3408 3409 3410 3411 T2 34 3502 3505 3511 T2 34 /ehicle Type Total NBOT	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 St George 838 374 263 St George Total Distance Travelled (PCU-km/h) 9789,65 2982,92	1950 1750 1800 1950 s St 1950 1950 s St Total Time Spent (PCU- hr/h) 248,05 60,17	46 14 9 28 41 73 34 24 54 Speed (km/h) 39,47 49,57	10 7 9 11 11 18 19 12 17 Total Delay (PCU-hrs/h) 15302,19 14,15	B A A B B B B B B C Total Distance Travelled (Pass-km/h)	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18 19,6% Total Time Spent (Pass- br/h)	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 0r Tambo 6 41 41 0r Tambo Total Per Index 1043 208	46 46 0 0 b & St Geo 35 0 0 0 b & St Geo 6,19	4 4 3 3 9 orges St 2 4 4 9 orges St Fuel Consumptio (I/hr) 1324,7 23
3408 3409 3410 3411 T2 34 3502 3505 3511 T2 34 /ehicle Type Total	ST SL WR WLT Or Tambo 8 NLR ET WT	526 144 95 308 St George 838 374 263 St George Total Distance Travelled (PCU-km/h) 9789,65	1950 1750 1800 1950 s St 1950 1950 1950 s St Total Time Spent (PCU- hr/h) 248,05	46 14 9 28 41 73 34 24 54 54 Mean Journey Speed (km/h) 39,47	10 7 9 11 11 18 19 12 17 Total Delay (PCU-hrs/h) 15302,19	B A A B B B B B B C Total Distance Travelled (Pass-km/h)	0,28 5,41 1,09 3,99 8,2% 15,87 7,77 3,18 19,6% Total Time Spent (Pass- br/h)	13,6 225,91 43,82 38,25 143,48 858,21 616,11 298,46 127,63	6 6 52 0r Tambo 6 41 41 0r Tambo Total Per Index 1043 208	46 46 0 0 b & St Geo 5 b & St Geo 5 c & St Geo 6 (\$/H) 6,19 9,09	2 4 orges St Fuel Consumption

Note: - L = Left, T = Through, R = Righturn

ANNEXURE C –

SIDRA Detailed Results of 2028 Key Intersection Evaluations

Site: 101vv [AM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	ormance - V	/ehicles	6							
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	David Mont	toedi									
1	L2	347	9.1	0.689	37.3	LOS D	13.9	105.2	0.95	0.85	36.9
2	T1	126	0.0	0.224	26.3	LOS C	4.2	29.7	0.80	0.64	41.9
Approa	ch	474	6.7	0.689	34.3	LOS C	13.9	105.2	0.91	0.80	38.1
North: I	_ebona Mo	tsoeneng									
8	T1	253	0.0	0.448	28.4	LOS C	9.2	64.1	0.87	0.73	40.9
9	R2	505	0.0	0.674	26.1	LOS C	16.9	118.6	0.82	0.83	41.1
Approa	ch	758	0.0	0.674	26.8	LOS C	16.9	118.6	0.83	0.80	41.0
West: D	DM Seleme	la									
10	L2	253	0.0	0.219	13.5	LOS B	4.8	33.5	0.47	0.69	48.6
12	R2	140	22.5	0.657	48.7	LOS D	6.3	52.4	1.00	0.83	32.4
Approa	ch	393	8.0	0.657	26.0	LOS C	6.3	52.4	0.66	0.74	41.3
All Vehi	icles	1624	3.9	0.689	28.8	LOS C	16.9	118.6	0.81	0.78	40.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

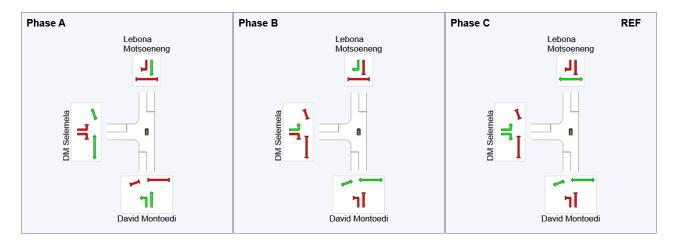
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back c	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
P1S	South Slip/Bypass Lane Crossing	53	7.6	LOS A	0.1	0.1	0.41	0.41
P3	North Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	27.3	LOS C	0.1	0.1	0.78	0.78
P4S	West Slip/Bypass Lane Crossing	53	25.0	LOS C	0.1	0.1	0.75	0.75
All Pe	destrians	263	21.6	LOS C			0.66	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101vv [AM Peak - Conversion]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	16	46	0
Green Time (sec)	25	39	11
Phase Time (sec)	30	44	16
Phase Split	33%	49%	18%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101vv [PM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	ormance - V	/ehicles	6							
Mov	OD	Demanc	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	David Mont	toedi									
1	L2	208	15.2	0.431	34.2	LOS C	7.6	59.7	0.86	0.79	38.0
2	T1	63	0.0	0.112	25.3	LOS C	2.0	14.3	0.77	0.59	42.4
Approa	ch	272	11.7	0.431	32.1	LOS C	7.6	59.7	0.84	0.75	38.9
North: I	_ebona Mo	tsoeneng									
8	T1	51	0.0	0.090	25.1	LOS C	1.6	11.3	0.76	0.58	42.5
9	R2	126	0.0	0.383	41.6	LOS D	5.0	35.2	0.93	0.78	34.9
Approa	ch	177	0.0	0.383	36.9	LOS D	5.0	35.2	0.88	0.73	36.8
West: D	DM Seleme	la									
10	L2	505	0.0	0.437	15.0	LOS B	11.4	79.8	0.56	0.74	47.7
12	R2	284	11.1	0.413	26.6	LOS C	9.0	69.0	0.77	0.79	40.6
Approa	ch	789	4.0	0.437	19.2	LOS B	11.4	79.8	0.63	0.76	44.9
All Vehi	icles	1238	5.1	0.437	24.5	LOS C	11.4	79.8	0.71	0.75	42.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

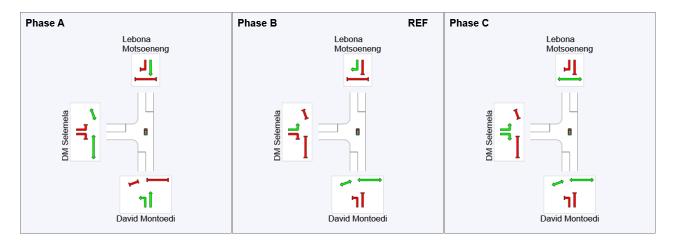
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back of	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
P1S	South Slip/Bypass Lane Crossing	53	7.6	LOS A	0.1	0.1	0.41	0.41
P3	North Full Crossing	53	21.4	LOS C	0.1	0.1	0.69	0.69
P4	West Full Crossing	53	27.3	LOS C	0.1	0.1	0.78	0.78
P4S	West Slip/Bypass Lane Crossing	53	25.0	LOS C	0.1	0.1	0.75	0.75
All Pe	destrians	263	18.0	LOS B			0.61	0.61

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101vv [PM Peak - Conversion]

New Site

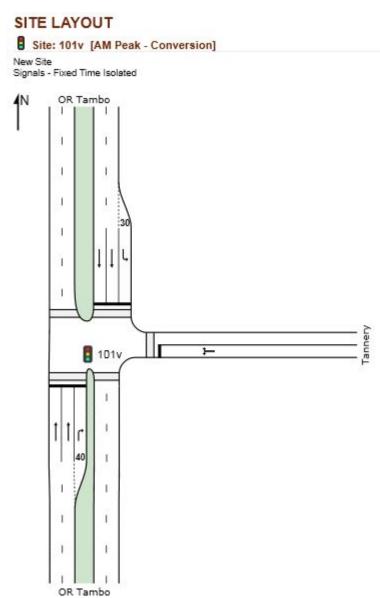

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	60	0	20
Green Time (sec)	25	15	35
Phase Time (sec)	30	20	40
Phase Split	33%	22%	44%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.



Reference

REF: VAR: Variable Phase

OR Tambo & Tannery

Site: 101v [AM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Moven	nent Perfo	rmance - Ve	ehicles	5							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
2	T1	1727	1.8	0.764	12.0	LOS B	28.2	200.5	0.74	0.68	50.1
3	R2	107	5.0	0.639	50.9	LOS D	4.9	35.8	1.00	0.82	32.0
Approa	ch	1834	2.0	0.764	14.3	LOS B	28.2	200.5	0.75	0.69	48.5
East: Ta	annery										
4	L2	23	0.0	0.378	46.4	LOS D	3.6	25.4	0.96	0.77	33.5
6	R2	63	0.0	0.378	46.4	LOS D	3.6	25.4	0.96	0.77	33.6
Approa	ch	86	0.0	0.378	46.4	LOS D	3.6	25.4	0.96	0.77	33.6
North: 0	OR Tambo										
7	L2	69	5.0	0.065	12.3	LOS B	1.1	8.4	0.40	0.66	48.7
8	T1	1013	3.1	0.447	8.9	LOS A	11.5	82.9	0.54	0.49	52.3
Approa	ch	1083	3.2	0.447	9.1	LOS A	11.5	82.9	0.54	0.50	52.1
All Vehi	cles	3003	2.4	0.764	13.3	LOS B	28.2	200.5	0.68	0.62	49.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

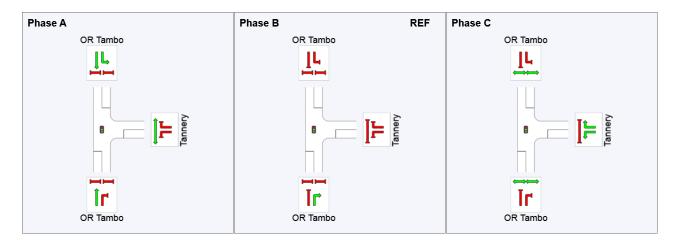
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	8.5	LOS A	0.1	0.1	0.43	0.43
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94
All Pe	destrians	263	33.1	LOS D			0.84	0.84

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101v [AM Peak - Conversion]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Phase Times specified by the user Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	30	0	14
Green Time (sec)	56	8	10
Phase Time (sec)	62	14	14
Phase Split	69%	16%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101v [PM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	rmance - Ve	ehicles	3							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
2	T1	940	3.4	0.427	9.2	LOS A	10.8	78.1	0.55	0.48	52.1
3	R2	34	5.0	0.261	50.5	LOS D	1.5	11.0	0.98	0.73	32.1
Approa	ch	974	3.5	0.427	10.7	LOS B	10.8	78.1	0.56	0.49	51.0
East: Ta	annery										
4	L2	106	0.0	0.687	47.6	LOS D	8.2	57.3	1.00	0.85	33.2
6	R2	78	0.0	0.687	47.6	LOS D	8.2	57.3	1.00	0.85	33.2
Approa	ch	184	0.0	0.687	47.6	LOS D	8.2	57.3	1.00	0.85	33.2
North: (OR Tambo										
7	L2	63	5.0	0.060	12.6	LOS B	1.1	7.8	0.41	0.66	48.4
8	T1	1545	2.0	0.682	11.7	LOS B	22.7	162.0	0.70	0.64	50.3
Approa	ch	1608	2.1	0.682	11.7	LOS B	22.7	162.0	0.68	0.64	50.2
All Vehi	cles	2766	2.4	0.687	13.7	LOS B	22.7	162.0	0.66	0.60	48.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

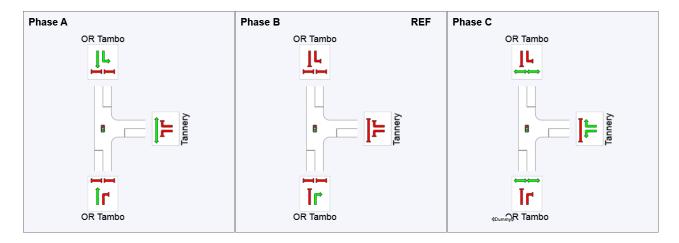
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	35.6	LOS D	0.1	0.1	0.89	0.89
P2	East Full Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.9
All Peo	destrians	263	32.1	LOS D			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101v [PM Peak - Conversion]

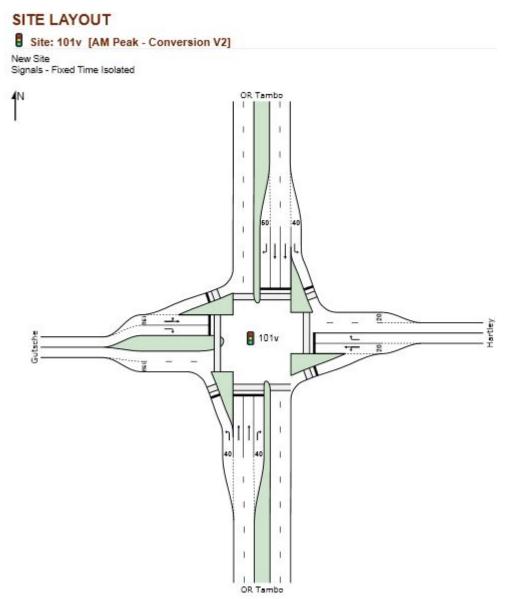
New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Α	В	С
30	0	12
55	6	12
61	12	17
68%	13%	19%
	30 55 61	30 0 55 6


See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101v [AM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

-	/lov Tota veh/r	nd Flows I HV	Deg.	Average						
	veh/r	HV		,	Level of	95% Back (of Queue	Prop.	Effective	Average
South: OP			Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: OP		· %	v/c	sec		veh	m		per veh	km/h
South. OK	Tambo									
1	L2 183	0.0	0.156	14.4	LOS B	3.2	22.5	0.43	0.71	53.5
2	T1 1408	2.2	0.826	25.5	LOS C	28.7	204.5	0.85	0.87	46.5
3	R2 66	5.0	0.440	51.7	LOS D	2.9	21.3	0.99	0.76	34.2
Approach	1657	2.1	0.826	25.3	LOS C	28.7	204.5	0.81	0.85	46.5
East: Hartle	ey									
4	L2 11	0.0	0.071	44.2	LOS D	0.7	4.6	0.91	0.67	35.2
5	T1 5	0.0	0.071	38.6	LOS D	0.7	4.6	0.91	0.67	35.5
6	R2 6	0.0	0.044	48.6	LOS D	0.3	1.9	0.95	0.65	33.1
Approach	23	3 0.0	0.071	44.2	LOS D	0.7	4.6	0.92	0.67	34.7
North: OR	Tambo									
7	L2 49	5.0	0.046	14.0	LOS B	0.8	5.8	0.40	0.68	53.8
8	T1 898	3.5	0.528	17.5	LOS B	13.9	99.9	0.70	0.71	51.8
9	R2 121	0.0	0.735	54.6	LOS D	5.7	39.9	1.00	0.85	33.4
Approach	1069	3.2	0.735	21.5	LOS C	13.9	99.9	0.72	0.72	48.8
West: Guts	che									
10	L2 102	0.0	0.477	47.1	LOS D	4.7	32.6	0.98	0.78	33.8
11	T1 6	0.0	0.477	41.5	LOS D	4.7	32.6	0.98	0.78	34.1
12	R2 97	0.0	0.673	53.2	LOS D	4.5	31.8	1.00	0.83	31.8
Approach	206	6 0.0	0.673	49.8	LOS D	4.7	32.6	0.99	0.80	32.8
All Vehicles	s 2955	5 2.3	0.826	25.8	LOS C	28.7	204.5	0.79	0.80	45.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

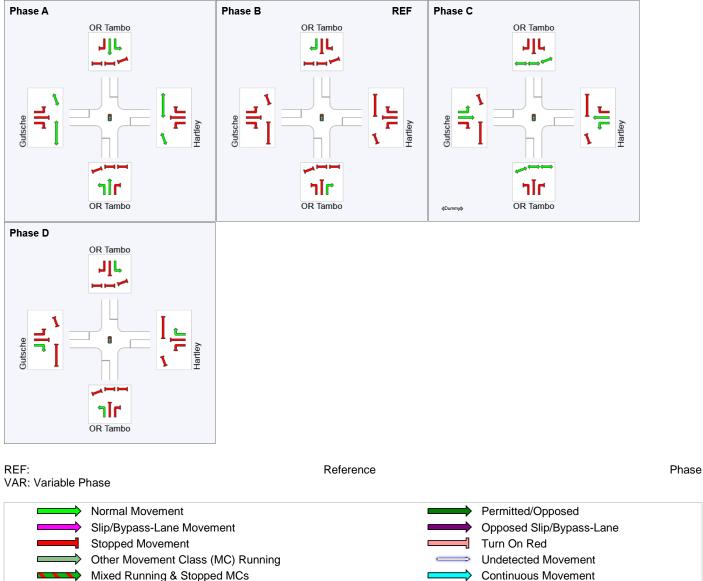
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back o	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94
P1S	South Slip/Bypass Lane Crossing	53	37.4	LOS D	0.1	0.1	0.91	0.91
P2	East Full Crossing	53	16.8	LOS B	0.1	0.1	0.61	0.61
P2S	East Slip/Bypass Lane Crossing	53	12.3	LOS B	0.1	0.1	0.52	0.52
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94
P3S	North Slip/Bypass Lane Crossing	53	37.4	LOS D	0.1	0.1	0.91	0.91
P4	West Full Crossing	53	19.4	LOS B	0.1	0.1	0.66	0.66
P4S	West Slip/Bypass Lane Crossing	53	12.3	LOS B	0.1	0.1	0.52	0.52
All Pe	destrians	526	29.3	LOS C			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [AM Peak - Conversion V2]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Phase Change Time (sec)	40	0	13	29
Green Time (sec)	45	7	10	6
Phase Time (sec)	51	13	15	11
Phase Split	57%	14%	17%	12%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Other Movement Class (MC) Stopped

Phase Transition Applied

Site: 101v [PM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Mover	nent Pe <u>rfo</u>	ormance - Vo	ehicles	·							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo)									
1	L2	126	0.0	0.139	19.0	LOS B	3.0	21.1	0.58	0.70	45.3
2	T1	916	3.4	0.540	16.9	LOS B	14.1	101.8	0.73	0.64	47.0
3	R2	16	5.0	0.126	49.6	LOS D	0.7	5.2	0.96	0.69	32.5
Approa	ch	1059	3.0	0.540	17.6	LOS B	14.1	101.8	0.72	0.65	46.5
East: H	lartley										
4	L2	57	0.0	0.225	43.4	LOS D	2.4	17.0	0.92	0.74	35.0
5	T1	4	0.0	0.225	37.8	LOS D	2.4	17.0	0.92	0.74	35.3
6	R2	15	0.0	0.092	47.8	LOS D	0.6	4.5	0.95	0.69	33.4
Approa	ch	76	0.0	0.225	44.0	LOS D	2.4	17.0	0.93	0.73	34.7
North:	OR Tambo										
7	L2	5	5.0	0.006	18.0	LOS B	0.1	0.8	0.53	0.61	45.8
8	T1	1345	2.3	0.758	20.3	LOS C	24.7	176.1	0.86	0.79	45.0
9	R2	48	0.0	0.332	50.6	LOS D	2.1	14.9	0.98	0.74	32.3
Approa	ch	1398	2.2	0.758	21.3	LOS C	24.7	176.1	0.87	0.78	44.4
West: 0	Gutsche										
10	L2	39	0.0	0.150	42.8	LOS D	1.6	11.2	0.91	0.72	35.1
11	T1	1	0.0	0.150	37.2	LOS D	1.6	11.2	0.91	0.72	35.4
12	R2	119	0.0	0.719	53.0	LOS D	5.6	38.9	1.00	0.86	31.9
Approa	ch	159	0.0	0.719	50.3	LOS D	5.6	38.9	0.98	0.82	32.7
All Veh	icles	2692	2.3	0.758	22.2	LOS C	24.7	176.1	0.82	0.73	43.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

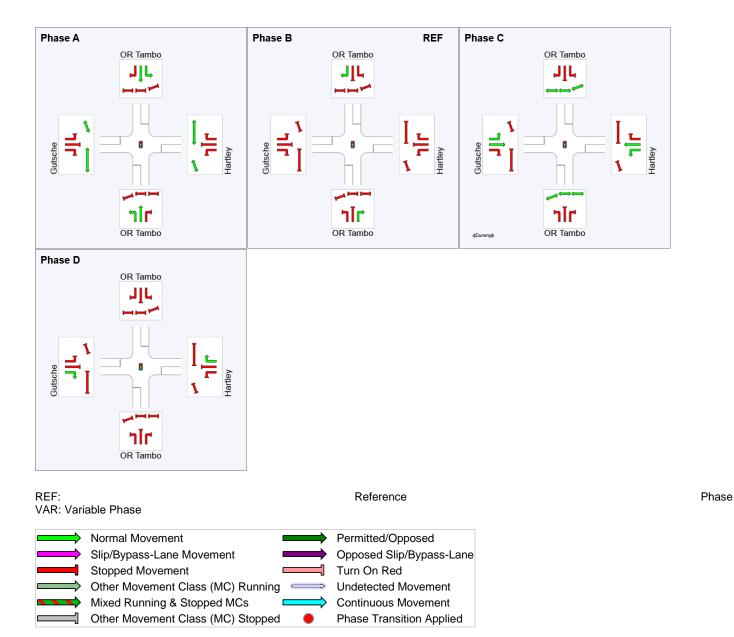
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

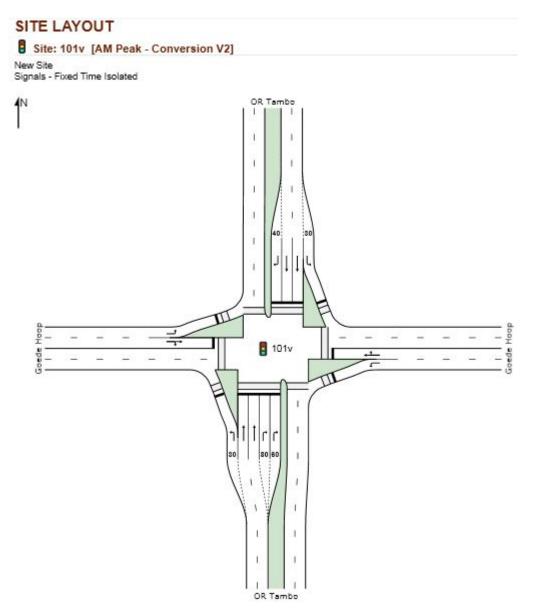
Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back o	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P1S	South Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P2	East Full Crossing	53	18.1	LOS B	0.1	0.1	0.63	0.63
P2S	East Slip/Bypass Lane Crossing	53	13.4	LOS B	0.1	0.1	0.55	0.55
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P3S	North Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P4	West Full Crossing	53	20.7	LOS C	0.1	0.1	0.68	0.68
P4S	West Slip/Bypass Lane Crossing	53	13.4	LOS B	0.1	0.1	0.55	0.55
All Pe	destrians	526	29.0	LOS C			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [PM Peak - Conversion V2]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)


Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Phase Change Time (sec)	42	0	12	30
Green Time (sec)	43	6	12	7
Phase Time (sec)	49	12	17	12
Phase Split	54%	13%	19%	13%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 101v [AM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

ID Mov Total HV Satn Delay Service Vehicles Distance Queued Stop Rate Sp	Mover	nent Perfo	ormance - V	ehicles	5							
veh/h % v/c sec veh m per veh k 1 L2 128 0.0 0.132 19.0 LOS B 2.8 19.9 0.54 0.72 2 2 T1 1056 3.0 0.583 17.6 LOS B 16.8 120.9 0.72 0.73 3 R2 347 5.0 0.582 44.9 LOS D 7.3 53.0 0.97 0.81 Approach 1531 3.2 0.583 23.9 LOS C 16.8 120.9 0.76 0.75 East: Goede Hoop	Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
South: OR Tambo 1 L2 128 0.0 0.132 19.0 LOS B 2.8 19.9 0.54 0.72 2 T1 1056 3.0 0.583 17.6 LOS B 16.8 120.9 0.72 0.73 3 R2 347 5.0 0.582 44.9 LOS D 7.3 53.0 0.97 0.81 Approach 1531 3.2 0.583 23.9 LOS C 16.8 120.9 0.76 0.75 East: Goede Hoop	ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			veh/h	%	v/c	sec		veh	m		per veh	km/h
2 T1 1056 3.0 0.583 17.6 LOS B 16.8 120.9 0.72 0.73 3 R2 347 5.0 0.582 44.9 LOS D 7.3 53.0 0.97 0.81 Approach 1531 3.2 0.583 23.9 LOS C 16.8 120.9 0.76 0.75 East: Goede Hoop	South:	OR Tambo										
3 R2 347 5.0 0.582 44.9 LOS D 7.3 53.0 0.97 0.81 Approach 1531 3.2 0.583 23.9 LOS C 16.8 120.9 0.76 0.75 East: Goede Hoop	1	L2	128	0.0	0.132	19.0	LOS B	2.8	19.9	0.54	0.72	43.5
Approach 1531 3.2 0.583 23.9 LOS C 16.8 120.9 0.76 0.75 East: Goede Hoop 4 L2 39 0.0 0.163 41.3 LOS D 1.6 11.0 0.92 0.72 5 T1 5 0.0 0.043 36.4 LOS D 0.4 2.7 0.89 0.64 6 R2 5 0.0 0.043 39.3 LOS D 0.4 2.7 0.89 0.64 Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86	2	T1	1056	3.0	0.583	17.6	LOS B	16.8	120.9	0.72	0.73	51.7
East: Goede Hoop 4 L2 39 0.0 0.163 41.3 LOS D 1.6 11.0 0.92 0.72 5 T1 5 0.0 0.043 36.4 LOS D 0.4 2.7 0.89 0.64 6 R2 5 0.0 0.043 39.3 LOS D 0.4 2.7 0.89 0.64 Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 <td< td=""><td>3</td><td>R2</td><td>347</td><td>5.0</td><td>0.582</td><td>44.9</td><td>LOS D</td><td>7.3</td><td>53.0</td><td>0.97</td><td>0.81</td><td>27.3</td></td<>	3	R2	347	5.0	0.582	44.9	LOS D	7.3	53.0	0.97	0.81	27.3
4 L2 39 0.0 0.163 41.3 LOS D 1.6 11.0 0.92 0.72 5 T1 5 0.0 0.043 36.4 LOS D 0.4 2.7 0.89 0.64 6 R2 5 0.0 0.043 39.3 LOS D 0.4 2.7 0.89 0.64 Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 0.0 0.95 39.7 LOS	Approa	ach	1531	3.2	0.583	23.9	LOS C	16.8	120.9	0.76	0.75	45.5
5 T1 5 0.0 0.043 36.4 LOS D 0.4 2.7 0.89 0.64 6 R2 5 0.0 0.043 39.3 LOS D 0.4 2.7 0.89 0.64 Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop	East: 0	Goede Hoop)									
6 R2 5 0.0 0.043 39.3 LOS D 0.4 2.7 0.89 0.64 Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 10 L2 25 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 11 T1 27 0.0 0.229 38.0 <td>4</td> <td>L2</td> <td>39</td> <td>0.0</td> <td>0.163</td> <td>41.3</td> <td>LOS D</td> <td>1.6</td> <td>11.0</td> <td>0.92</td> <td>0.72</td> <td>26.2</td>	4	L2	39	0.0	0.163	41.3	LOS D	1.6	11.0	0.92	0.72	26.2
Approach 49 0.0 0.163 40.6 LOS D 1.6 11.0 0.91 0.71 North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 1074 3.1 0.553 39.7 LOS D 1.0 6.9 0.90 0.70 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72	5	T1	5	0.0	0.043	36.4	LOS D	0.4	2.7	0.89	0.64	5.5
North: OR Tambo 7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	6	R2	5	0.0	0.043	39.3	LOS D	0.4	2.7	0.89	0.64	27.4
7 L2 20 5.0 0.023 18.4 LOS B 0.4 3.1 0.50 0.67 8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 0.090 0.70 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	Approa	ach	49	0.0	0.163	40.6	LOS D	1.6	11.0	0.91	0.71	25.0
8 T1 1035 3.1 0.553 17.5 LOS B 15.1 108.5 0.71 0.72 9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop	North:	OR Tambo										
9 R2 19 0.0 0.057 40.4 LOS D 0.7 4.9 0.86 0.70 Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	7	L2	20	5.0	0.023	18.4	LOS B	0.4	3.1	0.50	0.67	44.2
Approach 1074 3.1 0.553 17.9 LOS B 15.1 108.5 0.71 0.72 West: Goede Hoop 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	8	T1	1035	3.1	0.553	17.5	LOS B	15.1	108.5	0.71	0.72	51.8
West: Goede Hoop 10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	9	R2	19	0.0	0.057	40.4	LOS D	0.7	4.9	0.86	0.70	29.1
10 L2 25 0.0 0.095 39.7 LOS D 1.0 6.9 0.90 0.70 11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	Approa	ach	1074	3.1	0.553	17.9	LOS B	15.1	108.5	0.71	0.72	51.3
11 T1 27 0.0 0.229 38.0 LOS D 2.2 15.7 0.92 0.72 12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	West:	Goede Hoo	D									
12 R2 29 0.0 0.229 41.0 LOS D 2.2 15.7 0.92 0.72	10	L2	25	0.0	0.095	39.7	LOS D	1.0	6.9	0.90	0.70	26.7
	11	T1	27	0.0	0.229	38.0	LOS D	2.2	15.7	0.92	0.72	5.4
Approach 81 0.0 0.229 39.6 LOS D 2.2 15.7 0.91 0.72	12	R2	29	0.0	0.229	41.0	LOS D	2.2	15.7	0.92	0.72	26.9
	Approa	ach	81	0.0	0.229	39.6	LOS D	2.2	15.7	0.91	0.72	22.0
All Vehicles 2735 3.0 0.583 22.3 LOS C 16.8 120.9 0.75 0.73	All Veh	icles	2735	3.0	0.583	22.3	LOS C	16.8	120.9	0.75	0.73	46.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

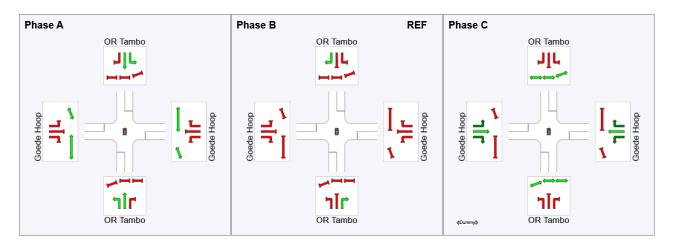
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back o	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P1S	South Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P2	East Full Crossing	53	14.5	LOS B	0.1	0.1	0.57	0.57
P2S	East Slip/Bypass Lane Crossing	53	11.8	LOS B	0.1	0.1	0.51	0.51
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P3S	North Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P4	West Full Crossing	53	14.5	LOS B	0.1	0.1	0.57	0.57
P4S	West Slip/Bypass Lane Crossing	53	11.8	LOS B	0.1	0.1	0.51	0.51
All Pe	destrians	526	27.7	LOS C			0.76	0.76

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [AM Peak - Conversion V2]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	39	0	21
Green Time (sec)	46	15	12
Phase Time (sec)	52	21	17
Phase Split	58%	23%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101v [PM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Mover	nent Pe <u>rfo</u>	ormance - V	ehicles	·							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1	L2	61	0.0	0.052	14.3	LOS B	1.0	7.1	0.41	0.68	48.6
2	T1	882	3.6	0.396	11.2	LOS B	9.8	70.4	0.54	0.61	56.8
3	R2	71	5.0	0.271	52.0	LOS D	1.6	11.4	0.98	0.73	24.8
Approa	ich	1013	3.5	0.396	14.2	LOS B	9.8	70.4	0.56	0.63	53.8
East: G	Goede Hoop)									
4	L2	129	0.0	0.533	43.9	LOS D	5.5	38.6	0.98	0.79	25.3
5	T1	18	0.0	0.185	37.7	LOS D	1.8	12.4	0.91	0.71	5.3
6	R2	27	0.0	0.185	40.6	LOS D	1.8	12.4	0.91	0.71	26.8
Approa	ach	173	0.0	0.533	42.7	LOS D	5.5	38.6	0.96	0.77	24.3
North:	OR Tambo										
7	L2	3	5.0	0.002	14.1	LOS B	0.0	0.3	0.39	0.63	48.9
8	T1	1204	2.6	0.537	12.3	LOS B	15.2	109.0	0.60	0.66	55.9
9	R2	42	0.0	0.289	51.7	LOS D	1.8	12.8	0.98	0.73	24.8
Approa	ach	1248	2.5	0.537	13.6	LOS B	15.2	109.0	0.62	0.67	54.6
West: 0	Goede Hoo	D									
10	L2	13	0.0	0.052	40.3	LOS D	0.5	3.5	0.90	0.67	26.5
11	T1	8	0.0	0.149	37.5	LOS D	1.4	9.5	0.91	0.71	5.4
12	R2	27	0.0	0.149	40.5	LOS D	1.4	9.5	0.91	0.71	26.8
Approa	ach	47	0.0	0.149	39.9	LOS D	1.4	9.5	0.91	0.70	24.5
All Veh	icles	2481	2.7	0.537	16.4	LOS B	15.2	109.0	0.62	0.66	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

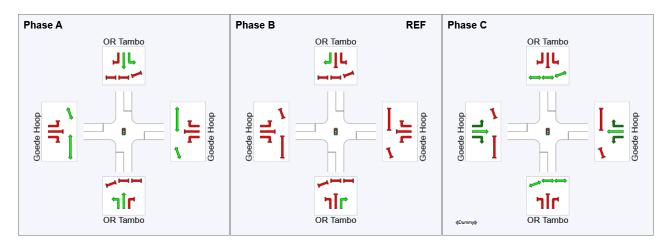
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back c	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P1S	South Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P2	East Full Crossing	53	9.8	LOS A	0.1	0.1	0.47	0.47
P2S	East Slip/Bypass Lane Crossing	53	7.6	LOS A	0.1	0.1	0.41	0.41
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P3S	North Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P4	West Full Crossing	53	9.8	LOS A	0.1	0.1	0.47	0.47
P4S	West Slip/Bypass Lane Crossing	53	7.6	LOS A	0.1	0.1	0.41	0.41
All Pe	destrians	526	26.0	LOS C			0.72	0.72

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [PM Peak - Conversion V2]

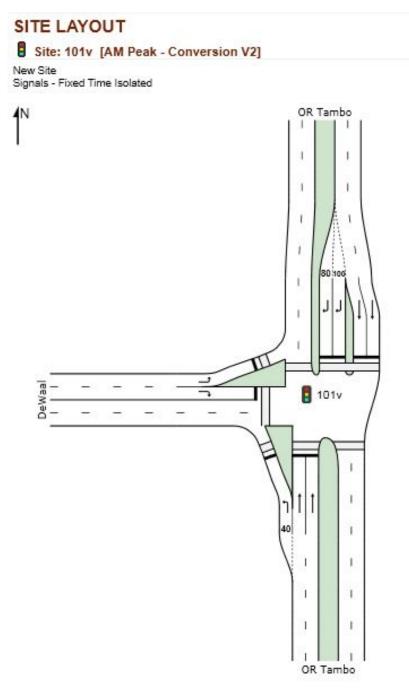
New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	30	0	12
Green Time (sec)	55	6	12
Phase Time (sec)	61	12	17
Phase Split	68%	13%	19%


See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101v [AM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	rmance - Ve	ehicles	3							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1	L2	120	0.0	0.124	17.3	LOS B	2.7	18.6	0.54	0.69	46.3
2	T1	961	3.4	0.521	15.0	LOS B	14.3	102.7	0.70	0.62	48.2
Approa	ch	1081	3.0	0.521	15.2	LOS B	14.3	102.7	0.68	0.62	48.0
North: (OR Tambo										
8	T1	1059	3.0	0.551	15.5	LOS B	15.5	111.5	0.72	0.64	47.9
9	R2	184	0.0	0.559	50.7	LOS D	4.1	29.0	1.00	0.78	32.3
Approa	ch	1243	2.6	0.559	20.7	LOS C	15.5	111.5	0.76	0.66	44.7
West: D	DeWaal										
10	L2	240	0.0	0.554	39.0	LOS D	9.5	66.3	0.93	0.82	36.4
12	R2	29	0.0	0.067	34.6	LOS C	1.0	7.0	0.81	0.70	37.8
Approa	ch	269	0.0	0.554	38.5	LOS D	9.5	66.3	0.92	0.80	36.5
All Vehi	cles	2593	2.5	0.559	20.3	LOS C	15.5	111.5	0.74	0.66	44.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

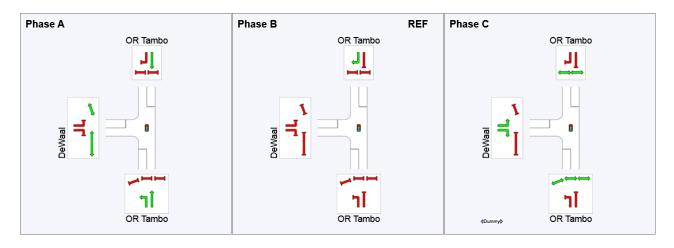
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back o	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	30.5	LOS D	0.1	0.1	0.82	0.82
P12	South Stage 2	53	30.5	LOS D	0.1	0.1	0.82	0.82
P1S	South Slip/Bypass Lane Crossing	53	28.9	LOS C	0.1	0.1	0.80	0.80
P31	North Stage 1	53	36.5	LOS D	0.1	0.1	0.90	0.90
P32	North Stage 2	53	30.5	LOS D	0.1	0.1	0.82	0.82
P4	West Full Crossing	53	14.5	LOS B	0.1	0.1	0.57	0.57
P4S	West Slip/Bypass Lane Crossing	53	11.8	LOS B	0.1	0.1	0.51	0.51
All Pe	destrians	368	26.2	LOS C			0.75	0.75

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [AM Peak - Conversion V2]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	39	0	13
Green Time (sec)	46	7	20
Phase Time (sec)	52	13	25
Phase Split	58%	14%	28%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Site: 101v [PM Peak - Conversion V2]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	rmance - Ve	ehicles	6							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1	L2	35	0.0	0.038	17.7	LOS B	0.8	5.4	0.53	0.66	46.1
2	T1	907	3.5	0.503	16.1	LOS B	13.4	96.5	0.71	0.63	47.5
Approa	ch	942	3.4	0.503	16.1	LOS B	13.4	96.5	0.71	0.63	47.4
North: (OR Tambo										
8	T1	1296	2.4	0.697	18.5	LOS B	21.8	155.7	0.83	0.74	46.0
9	R2	500	0.0	0.673	43.0	LOS D	10.6	74.1	0.98	0.84	34.6
Approa	ch	1796	1.7	0.697	25.3	LOS C	21.8	155.7	0.87	0.77	42.1
West: D	DeWaal										
10	L2	130	0.0	0.485	45.2	LOS D	5.5	38.2	0.97	0.79	34.3
12	R2	15	0.0	0.057	42.0	LOS D	0.6	4.1	0.89	0.69	35.1
Approa	ch	145	0.0	0.485	44.9	LOS D	5.5	38.2	0.96	0.78	34.4
All Vehi	icles	2884	2.2	0.697	23.3	LOS C	21.8	155.7	0.82	0.73	43.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

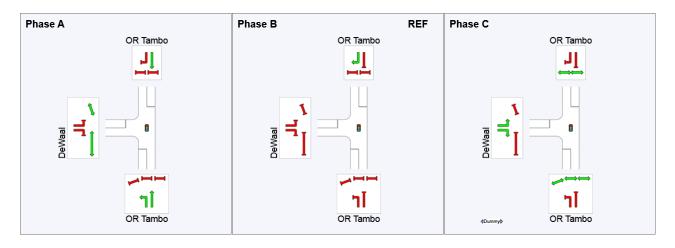
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back o	f Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	37.4	LOS D	0.1	0.1	0.91	0.91
P12	South Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P1S	South Slip/Bypass Lane Crossing	53	35.6	LOS D	0.1	0.1	0.89	0.89
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P4	West Full Crossing	53	15.6	LOS B	0.1	0.1	0.59	0.59
P4S	West Slip/Bypass Lane Crossing	53	12.8	LOS B	0.1	0.1	0.53	0.53
All Pe	destrians	368	30.8	LOS D			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101v [PM Peak - Conversion V2]

New Site

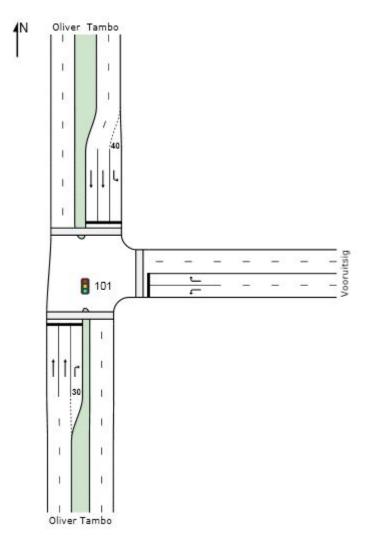

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	41	0	23
Green Time (sec)	44	17	12
Phase Time (sec)	50	23	17
Phase Split	56%	26%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.



Reference

REF: VAR: Variable Phase

Oliver Tambo & Vooruitsig

Site: 101 [AM Peak]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Mover	nent Perfo	rmance - Ve	ehicles	5							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Oliver Tamb	00									
2	T1	1004	3.1	0.667	16.4	LOS B	20.4	146.3	0.75	0.66	47.3
3	R2	124	5.0	0.825	54.5	LOS D	6.6	48.5	0.99	1.03	31.1
Approad	ch	1128	3.3	0.825	20.6	LOS C	20.4	146.3	0.77	0.70	44.7
East: V	ooruitsig										
4	L2	205	5.0	0.457	35.8	LOS D	7.6	55.8	0.88	0.80	37.1
6	R2	308	5.0	0.688	38.9	LOS D	12.6	92.1	0.96	0.85	36.1
Approad	ch	513	5.0	0.688	37.7	LOS D	12.6	92.1	0.93	0.83	36.5
North: C	Oliver Tamb	00									
7	L2	163	5.0	0.190	18.3	LOS B	3.8	28.1	0.57	0.72	45.0
8	T1	1120	2.8	0.632	16.6	LOS B	18.9	135.4	0.76	0.67	47.2
Approa	ch	1283	3.1	0.632	16.8	LOS B	18.9	135.4	0.73	0.68	46.9
All Vehi	cles	2924	3.5	0.825	21.9	LOS C	20.4	146.3	0.78	0.72	43.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

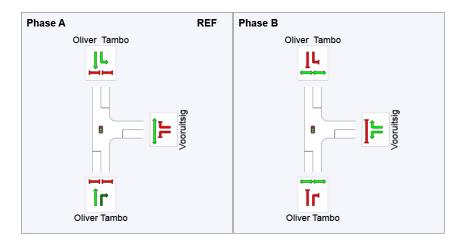
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	30.5	LOS D	0.1	0.1	0.82	0.82
P12	South Stage 2	53	28.1	LOS C	0.1	0.1	0.79	0.79
P2	East Full Crossing	53	16.8	LOS B	0.1	0.1	0.61	0.61
P31	North Stage 1	53	30.5	LOS D	0.1	0.1	0.82	0.82
P32	North Stage 2	53	28.1	LOS C	0.1	0.1	0.79	0.79
All Pe	destrians	263	26.8	LOS C			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [AM Peak]


New Site Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Phase Times specified by the user Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Results

Phase	Α	в
Phase Change Time (sec)	0	60
Green Time (sec)	45	23
Phase Time (sec)	52	38
Phase Split	58%	42%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: VAR: Variable Phase

Reference

Site: 101 [PM Peak]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Moverr	nent Perfo	rmance - Ve	ehicles	6							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Oliver Tamb	00									
2	T1	932	3.4	0.683	21.2	LOS C	19.2	138.1	0.83	0.73	44.5
3	R2	86	5.0	0.739	52.7	LOS D	4.2	30.8	1.00	0.92	31.6
Approad	ch	1018	3.5	0.739	23.9	LOS C	19.2	138.1	0.84	0.74	43.0
East: Vo	ooruitsig										
4	L2	527	5.0	0.910	53.2	LOS D	28.6	208.7	1.00	1.02	31.5
6	R2	418	5.0	0.723	34.6	LOS C	16.6	121.2	0.93	0.87	37.7
Approad	ch	945	5.0	0.910	45.0	LOS D	28.6	208.7	0.97	0.95	34.0
North: C	Oliver Tamb	0									
7	L2	10	5.0	0.014	21.0	LOS C	0.2	1.8	0.59	0.65	43.6
8	T1	1242	2.5	0.775	25.1	LOS C	24.4	174.3	0.92	0.85	42.5
Approad	ch	1252	2.5	0.775	25.0	LOS C	24.4	174.3	0.91	0.85	42.5
All Vehi	cles	3215	3.6	0.910	30.5	LOS C	28.6	208.7	0.91	0.85	39.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

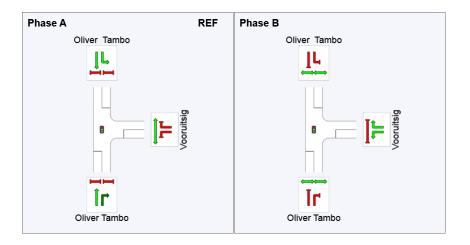
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	25.0	LOS C	0.1	0.1	0.75	0.75
P12	South Stage 2	53	22.8	LOS C	0.1	0.1	0.71	0.71
P2	East Full Crossing	53	21.4	LOS C	0.1	0.1	0.69	0.69
P31	North Stage 1	53	25.0	LOS C	0.1	0.1	0.75	0.75
P32	North Stage 2	53	22.8	LOS C	0.1	0.1	0.71	0.71
All Pe	destrians	263	23.4	LOS C			0.72	0.72

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

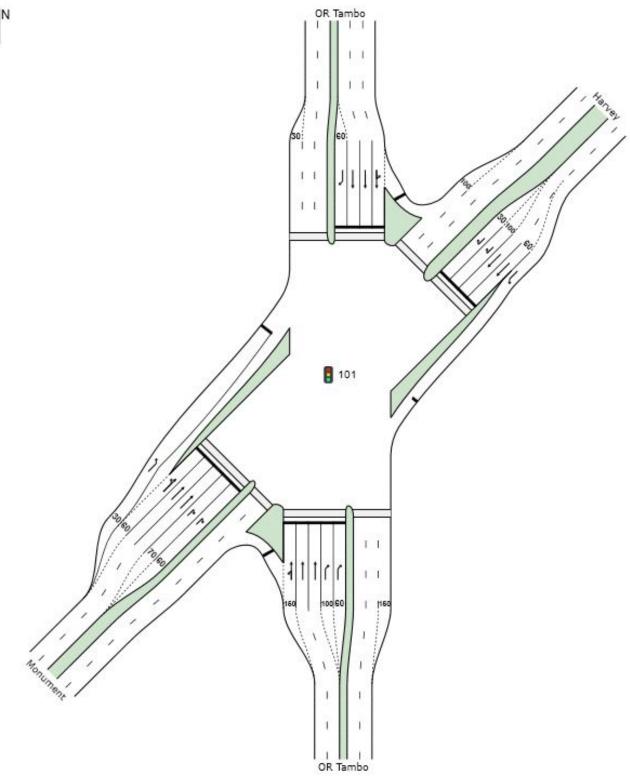
Site: 101 [PM Peak]


New Site Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Phase Times)

Phase Times specified by the user Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Results

Phase	Α	В
Phase Change Time (sec)	0	53
Green Time (sec)	38	30
Phase Time (sec)	45	45
Phase Split	50%	50%


See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: VAR: Variable Phase

Reference

1N

Site: 101 [AM Peak V3]

New Site

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (User-Given Cycle Time)

Mover	nent Perfo	rmance - V	ehicles	5							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1b	L3	293	0,0	0,523	16,7	LOS B	7,9	55,4	0,65	0,55	47,4
2	T1	1210	2,4	0,957	37,5	LOS D	32,6	232,5	0,99	1,11	37,6
3a	R1	354	0,0	0,926	49,7	LOS D	8,9	62,4	1,00	0,97	33,5
Approa	ch	1856	1,6	0,957	36,6	LOS D	32,6	232,5	0,94	0,99	38,0
NorthE	ast: Harvey										
24a	L1	362	0,0	0,898	37,8	LOS D	17,1	119,7	1,00	0,98	37,5
25	T1	415	0,0	0,504	28,3	LOS C	7,3	51,4	0,83	0,69	41,4
26b	R3	6	0,0	0,023	40,5	LOS D	0,1	0,8	0,89	0,56	36,5
Approa	ch	784	0,0	0,898	32,8	LOS C	17,1	119,7	0,91	0,82	39,5
North:	OR Tambo										
7b	L3	2	0,0	0,420	15,9	LOS B	6,5	47,0	0,60	0,51	47,9
8	T1	785	3,8	0,420	15,9	LOS B	6,5	47,1	0,60	0,51	47,9
9a	R1	107	0,0	0,562	40,7	LOS D	4,6	32,1	0,96	0,75	36,5
Approa	ch	894	3,3	0,562	18,9	LOS B	6,5	47,1	0,64	0,53	46,2
SouthV	Vest: Monu	ment									
30a	L1	537	0,0	0,472	15,9	LOS B	8,0	56,1	0,60	0,51	47,9
31	T1	798	0,0	0,594	17,1	LOS B	11,4	79,7	0,69	0,60	47,2
32b	R3	484	0,0	0,837	37,6	LOS D	10,9	76,6	0,99	0,91	37,6
Approa	ch	1818	0,0	0,837	22,2	LOS C	11,4	79,7	0,74	0,65	44,4
All Veh	icles	5352	1,1	0,957	28,2	LOS C	32,6	232,5	0,82	0,78	41,5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

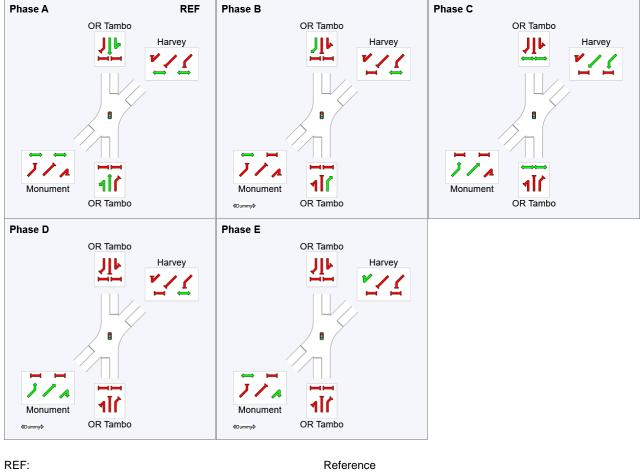
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39,3	LOS D	0,1	0,1	0,94	0,94
P12	South Stage 2	53	34,7	LOS D	0,1	0,1	0,88	0,88
P61	NorthEast Stage 1	53	7,1	LOS A	0,0	0,0	0,56	0,56
P62	NorthEast Stage 2	53	25,0	LOS C	0,1	0,1	0,75	0,75
P31	North Stage 1	53	36,5	LOS D	0,1	0,1	0,90	0,90
> 32	North Stage 2	53	34,7	LOS D	0,1	0,1	0,88	0,88
P81	SouthWest Stage 1	53	13,9	LOS B	0,1	0,1	0,56	0,56
P82	SouthWest Stage 2	53	22,8	LOS C	0,1	0,1	0,71	0,71
All Pe	destrians	421	26,8	LOS C			0,77	0,77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [AM Peak V3]

New Site


Signals - Fixed Time Coordinated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Green Split Priority applies Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Results

Α	в	С	D	Ε
0	33	46	69	81
30	8	18	6	6
35	13	24	9	9
39%	14%	27%	10%	10%
	30 35	0 33 30 8 35 13	30818351324	0 33 46 69 30 8 18 6

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

VAR: Variable Phase

	Normal Movement	Permitted/Opposed
	Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
	Stopped Movement	Turn On Red
\implies	Other Movement Class (MC) Running	Undetected Movement
	Mixed Running & Stopped MCs	Continuous Movement
	Other Movement Class (MC) Stopped	Phase Transition Applied

Site: 101 [PM Peak V3]

New Site

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	ormance - V	ehicles	6							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1b	L3	8	0,0	0,262	20,4	LOS C	3,6	25,9	0,64	0,52	45,3
2	T1	831	2,4	0,682	23,2	LOS C	12,4	88,5	0,81	0,69	43,9
3a	R1	203	0,0	0,341	33,0	LOS C	3,7	26,1	0,85	0,67	39,4
Approa	ch	1042	1,9	0,682	25,1	LOS C	12,4	88,5	0,81	0,68	42,9
NorthEa	ast: Harvey	,									
24a	L1	225	0,0	0,663	33,0	LOS C	9,0	63,0	0,93	0,77	39,4
25	T1	379	0,0	0,312	17,9	LOS B	4,8	33,6	0,61	0,50	46,7
26b	R3	348	0,0	0,536	29,9	LOS C	6,4	44,9	0,86	0,70	40,7
Approa	ch	952	0,0	0,663	25,9	LOS C	9,0	63,0	0,77	0,64	42,5
North: (OR Tambo										
7b	L3	404	0,0	0,894	32,8	LOS C	18,7	131,0	0,98	0,97	39,4
8	T1	817	3,8	0,870	29,9	LOS C	19,2	138,8	0,92	0,89	40,7
9a	R1	282	0,0	0,948	49,0	LOS D	14,7	103,1	1,00	1,04	33,8
Approa	ch	1502	2,1	0,948	34,2	LOS C	19,2	138,8	0,95	0,94	38,9
SouthW	/est: Monur	ment									
30a	L1	531	0,0	0,642	19,1	LOS B	11,4	79,8	0,68	0,58	46,0
31	T1	689	0,0	0,883	37,9	LOS D	14,3	100,1	0,99	0,93	37,5
32b	R3	14	0,0	0,056	41,0	LOS D	0,3	2,0	0,90	0,60	36,3
Approa	ch	1234	0,0	0,883	29,8	LOS C	14,3	100,1	0,85	0,77	40,7
All Vehi	icles	4731	1,1	0,948	29,4	LOS C	19,2	138,8	0,86	0,78	40,9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back of		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39,3	LOS D	0,1	0,1	0,94	0,94
P12	South Stage 2	53	37,4	LOS D	0,1	0,1	0,91	0,91
P61	NorthEast Stage 1	53	11,8	LOS B	0,1	0,1	0,51	0,51
P62	NorthEast Stage 2	53	29,7	LOS C	0,1	0,1	0,81	0,81
P31	North Stage 1	53	39,3	LOS D	0,1	0,1	0,94	0,94
P32	North Stage 2	53	37,4	LOS D	0,1	0,1	0,91	0,91
P81	SouthWest Stage 1	53	25,0	LOS C	0,1	0,1	0,75	0,75
P82	SouthWest Stage 2	53	27,3	LOS C	0,1	0,1	0,78	0,78
All Pe	destrians	421	30,9	LOS D			0,82	0,82

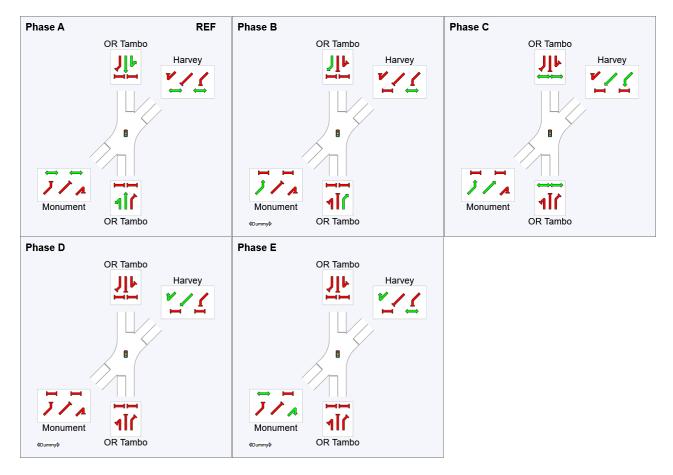
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

PHASING SUMMARY

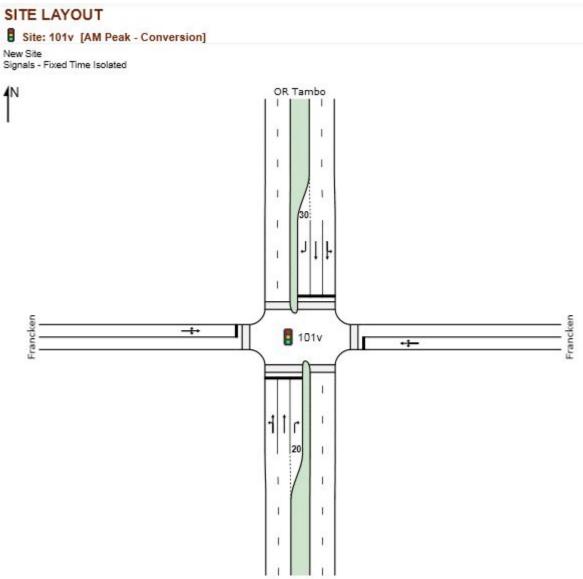
Site: 101 [PM Peak V3]

New Site


Signals - Fixed Time Coordinated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Green Split Priority applies Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	29	47	67	79
Green Time (sec)	24	13	15	6	6
Phase Time (sec)	29	18	21	11	11
Phase Split	32%	20%	23%	12%	12%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference VAR: Variable Phase

OR Tambo

MOVEMENT SUMMARY

Site: 101v [AM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

ID Mov Total veh/h HV Sain v/c Delay sec Service veh Distance m Queued Mode Stop Rate per veh Sp South: OR Tambo 1 L2 318 5.0 0.811 22.8 LOS C 31.8 228.6 0.83 0.86 0.83 0.86 2 T1 1518 2.1 0.811 17.5 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS D 1.5 10.6 0.92 0.68 5 T1 35 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 6 R2 1 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 38.6 LOS D 1.5<	Move	ment Pe <u>rfo</u>	rmance - V	ehicles	s							
veh/h % v/c sec veh m per veh k 1 L2 318 5.0 0.811 22.8 LOS C 31.8 228.6 0.83 0.86 2 T1 1518 2.1 0.811 17.5 LOS B 31.8 228.6 0.82 0.84 3 R2 16 5.0 0.126 50.9 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS B 31.8 228.6 0.82 0.84 East: Francken	Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
South: OR Tambo 1 L2 318 5.0 0.811 22.8 LOS C 31.8 228.6 0.83 0.86 2 T1 1518 2.1 0.811 17.5 LOS B 31.8 228.6 0.82 0.84 3 R2 16 5.0 0.126 50.9 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS B 31.8 228.6 0.82 0.84 East: Francken	ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			veh/h	%	v/c	sec		veh	m		per veh	km/h
2 T1 1518 2.1 0.811 17.5 LOS B 31.8 228.6 0.82 0.84 3 R2 16 5.0 0.126 50.9 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS B 31.8 228.6 0.82 0.84 East: Francken	South:	OR Tambo										
3 R2 16 5.0 0.126 50.9 LOS D 0.7 5.2 0.96 0.70 Approach 1853 2.6 0.811 18.7 LOS B 31.8 228.6 0.82 0.84 East: Francken	1	L2	318	5.0	0.811	22.8	LOS C	31.8	228.6	0.83	0.86	48.9
Approach 1853 2.6 0.811 18.7 LOS B 31.8 228.6 0.82 0.84 East: Francken 4 L2 1 0.0 0.150 43.7 LOS D 1.5 10.6 0.92 0.68 5 T1 35 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 6 R2 1 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.44 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97	2	T1	1518	2.1	0.811	17.5	LOS B	31.8	228.6	0.82	0.84	51.2
East: Francken 4 L2 1 0.0 0.150 43.7 LOS D 1.5 10.6 0.92 0.68 5 T1 35 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 6 R2 1 0.0 0.150 43.8 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 43.8 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2	3	R2	16	5.0	0.126	50.9	LOS D	0.7	5.2	0.96	0.70	34.3
4 L2 1 0.0 0.150 43.7 LOS D 1.5 10.6 0.92 0.68 5 T1 35 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 6 R2 1 0.0 0.150 43.8 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D </td <td>Approa</td> <td>ach</td> <td>1853</td> <td>2.6</td> <td>0.811</td> <td>18.7</td> <td>LOS B</td> <td>31.8</td> <td>228.6</td> <td>0.82</td> <td>0.84</td> <td>50.6</td>	Approa	ach	1853	2.6	0.811	18.7	LOS B	31.8	228.6	0.82	0.84	50.6
5 T1 35 0.0 0.150 38.2 LOS D 1.5 10.6 0.92 0.68 6 R2 1 0.0 0.150 43.8 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 53.2 LOS D<	East: F	rancken										
6 R2 1 0.0 0.150 43.8 LOS D 1.5 10.6 0.92 0.68 Approach 38 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D	4	L2	1	0.0	0.150	43.7	LOS D	1.5	10.6	0.92	0.68	36.2
Approach 38 0.0 0.150 38.6 LOS D 1.5 10.6 0.92 0.68 North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 12 R	5	T1	35	0.0	0.150	38.2	LOS D	1.5	10.6	0.92	0.68	36.8
North: OR Tambo 7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95	6	R2	1	0.0	0.150	43.8	LOS D	1.5	10.6	0.92	0.68	36.2
7 L2 18 5.0 0.384 14.6 LOS B 9.3 67.4 0.53 0.48 8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95	Approa	ach	38	0.0	0.150	38.6	LOS D	1.5	10.6	0.92	0.68	36.8
8 T1 826 3.8 0.384 8.9 LOS A 9.3 67.4 0.53 0.47 9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.53 0.47 Mest: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95	North:	OR Tambo										
9 R2 24 5.0 0.184 50.0 LOS D 1.0 7.7 0.97 0.71 Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	7	L2	18	5.0	0.384	14.6	LOS B	9.3	67.4	0.53	0.48	50.6
Approach 868 3.9 0.384 10.2 LOS B 9.3 67.4 0.54 0.48 West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95	8	T1	826	3.8	0.384	8.9	LOS A	9.3	67.4	0.53	0.47	52.2
West: Francken 10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	9	R2	24	5.0	0.184	50.0	LOS D	1.0	7.7	0.97	0.71	32.3
10 L2 51 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	Approa	ach	868	3.9	0.384	10.2	LOS B	9.3	67.4	0.54	0.48	51.3
11 T1 32 0.0 0.808 47.6 LOS D 8.2 57.7 1.00 0.95 12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	West:	Francken										
12 R2 88 0.0 0.808 53.2 LOS D 8.2 57.7 1.00 0.95 Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	10	L2	51	0.0	0.808	53.2	LOS D	8.2	57.7	1.00	0.95	31.9
Approach 171 0.0 0.808 52.2 LOS D 8.2 57.7 1.00 0.95	11	T1	32	0.0	0.808	47.6	LOS D	8.2	57.7	1.00	0.95	32.3
	12	R2	88	0.0	0.808	53.2	LOS D	8.2	57.7	1.00	0.95	31.9
	Approa	ach	171	0.0	0.808	52.2	LOS D	8.2	57.7	1.00	0.95	32.0
All vehicles 2929 2.6 0.611 16.4 LOS B 31.8 228.6 0.75 0.74	All Veh	nicles	2929	2.8	0.811	18.4	LOS B	31.8	228.6	0.75	0.74	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Ped	lestrians						
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	38.4	LOS D	0.1	0.1	0.92	0.92
P2	East Full Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	38.4	LOS D	0.1	0.1	0.92	0.92
P4	West Full Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
All Pe	All Pedestrians		28.9	LOS C			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

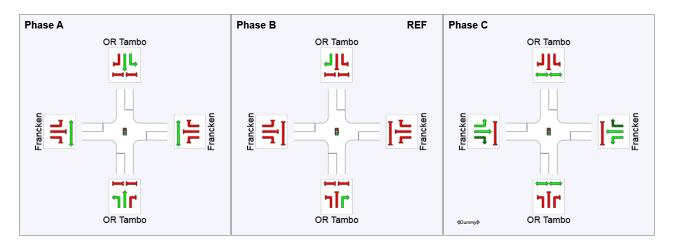
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101v [AM Peak - Conversion]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	29	0	12
Green Time (sec)	55	6	11
Phase Time (sec)	61	12	17
Phase Split	68%	13%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Reference

REF: VAR: Variable Phase

Phase

MOVEMENT SUMMARY

Site: 101v [PM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Mover	nent Perfo	ormance - Vo	ehicles	3							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
1	L2	173	5.0	0.522	17.7	LOS B	14.2	102.3	0.62	0.71	52.7
2	T1	974	3.2	0.522	12.7	LOS B	14.3	102.9	0.61	0.69	54.9
3	R2	6	5.0	0.048	50.2	LOS D	0.3	2.0	0.95	0.66	34.6
Approa	ich	1153	3.5	0.522	13.6	LOS B	14.3	102.9	0.62	0.69	54.4
East: F	rancken										
4	L2	9	0.0	0.045	41.9	LOS D	0.4	3.1	0.89	0.67	35.2
5	T1	1	0.0	0.045	36.4	LOS D	0.4	3.1	0.89	0.67	35.8
6	R2	1	0.0	0.045	41.9	LOS D	0.4	3.1	0.89	0.67	35.2
Approa	ich	11	0.0	0.045	41.3	LOS D	0.4	3.1	0.89	0.67	35.3
North:	OR Tambo										
7	L2	202	5.0	0.573	18.2	LOS B	16.3	117.7	0.65	0.73	52.2
8	T1	1043	3.0	0.573	13.1	LOS B	16.3	117.7	0.64	0.70	54.6
9	R2	25	5.0	0.193	51.4	LOS D	1.1	8.1	0.97	0.71	34.2
Approa	ich	1271	3.4	0.573	14.7	LOS B	16.3	117.7	0.65	0.71	53.5
West:	Francken										
10	L2	42	0.0	0.500	45.5	LOS D	5.1	35.6	0.97	0.79	34.2
11	T1	27	0.0	0.500	40.0	LOS D	5.1	35.6	0.97	0.79	34.8
12	R2	52	0.0	0.500	45.5	LOS D	5.1	35.6	0.97	0.79	34.2
Approa	ich	120	0.0	0.500	44.3	LOS D	5.1	35.6	0.97	0.79	34.3
All Veh	icles	2555	3.2	0.573	15.7	LOS B	16.3	117.7	0.65	0.70	52.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Ped	estrians						
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P12	South Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P2	East Full Crossing	53	9.4	LOS A	0.1	0.1	0.46	0.46
P31	North Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94
P32	North Stage 2	53	37.4	LOS D	0.1	0.1	0.91	0.91
P4	West Full Crossing	53	9.4	LOS A	0.1	0.1	0.46	0.46
All Pe	destrians	316	28.7	LOS C			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

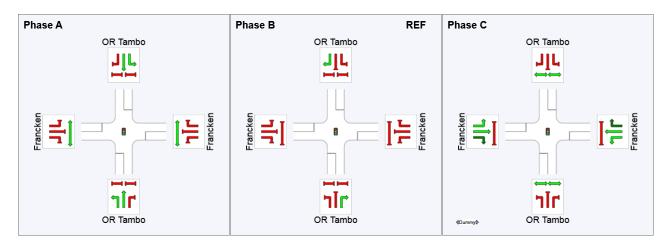
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101v [PM Peak - Conversion]

New Site

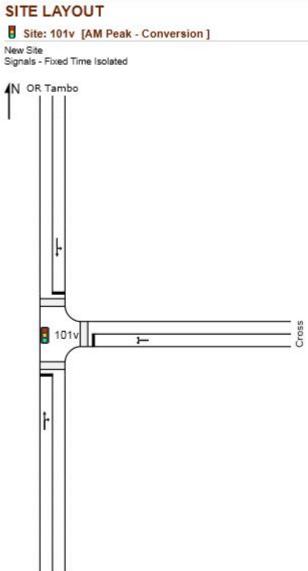

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Phase Change Time (sec)	30	0	12
Green Time (sec)	54	6	12
Phase Time (sec)	60	12	18
Phase Split	67%	13%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.



Reference

REF: VAR: Variable Phase

Phase

MOVEMENT SUMMARY

Site: 101v [AM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	rmance - Ve	ehicles	5							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
2	T1	1239	2.5	0.905	21.2	LOS C	53.9	385.4	0.85	0.90	44.5
3	R2	8	5.0	0.905	26.7	LOS C	53.9	385.4	0.85	0.90	43.0
Approa	ch	1247	2.5	0.905	21.2	LOS C	53.9	385.4	0.85	0.90	44.4
East: C	ross										
4	L2	39	0.0	0.339	44.1	LOS D	3.7	26.0	0.94	0.77	34.2
6	R2	52	0.0	0.339	44.0	LOS D	3.7	26.0	0.94	0.77	34.0
Approa	ch	91	0.0	0.339	44.1	LOS D	3.7	26.0	0.94	0.77	34.1
North: (OR Tambo										
7	L2	10	5.0	0.568	10.6	LOS B	14.4	104.1	0.46	0.43	53.7
8	T1	763	4.1	0.568	5.0	LOS A	14.4	104.1	0.46	0.43	55.4
Approa	ch	773	4.1	0.568	5.1	LOS A	14.4	104.1	0.46	0.43	55.3
All Vehi	cles	2111	3.0	0.905	16.3	LOS B	53.9	385.4	0.71	0.72	47.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

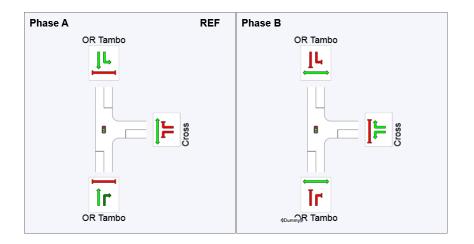
Move	Movement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	53	38.4	LOS D	0.1	0.1	0.92	0.92					
P2	East Full Crossing	53	4.4	LOS A	0.0	0.0	0.31	0.31					
P3	North Full Crossing	53	38.4	LOS D	0.1	0.1	0.92	0.92					
All Pe	destrians	158	27.0	LOS C			0.72	0.72					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101v [AM Peak - Conversion]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Results

Phase	Α	В
Phase Change Time (sec)	0	73
Green Time (sec)	67	12
Phase Time (sec)	72	18
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: VAR: Variable Phase

Reference

Phase

MOVEMENT SUMMARY

Site: 101v [PM Peak - Conversion]

New Site

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Moven	nent Perfo	rmance - Ve	ehicles	5							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	OR Tambo										
2	T1	987	3.2	0.822	12.2	LOS B	32.7	235.1	0.77	0.74	49.9
3	R2	15	5.0	0.822	17.7	LOS B	32.7	235.1	0.77	0.74	48.1
Approa	ch	1002	3.2	0.822	12.3	LOS B	32.7	235.1	0.77	0.74	49.9
East: C	ross										
4	L2	29	0.0	0.377	44.4	LOS D	4.2	29.1	0.95	0.78	34.1
6	R2	72	0.0	0.377	44.3	LOS D	4.2	29.1	0.95	0.78	33.9
Approa	ch	101	0.0	0.377	44.3	LOS D	4.2	29.1	0.95	0.78	34.0
North: (OR Tambo										
7	L2	6	5.0	0.857	17.6	LOS B	40.3	288.1	0.76	0.75	48.8
8	T1	1194	2.6	0.857	12.0	LOS B	40.3	288.1	0.76	0.75	50.1
Approa	ch	1200	2.6	0.857	12.0	LOS B	40.3	288.1	0.76	0.75	50.1
All Vehi	cles	2303	2.8	0.857	13.5	LOS B	40.3	288.1	0.77	0.75	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

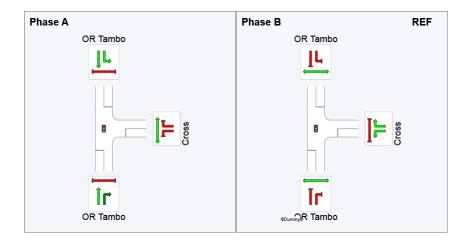
Move	Movement Performance - Pedestrians												
Mov		Demand	Average	Level of	Average Back of	Queue	Prop.	Effective					
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	South Full Crossing	53	38.4	LOS D	0.1	0.1	0.92	0.92					
P2	East Full Crossing	53	4.4	LOS A	0.0	0.0	0.31	0.31					
P3	North Full Crossing	53	38.4	LOS D	0.1	0.1	0.92	0.92					
All Pe	destrians	158	27.0	LOS C			0.72	0.72					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 101v [PM Peak - Conversion]

New Site


Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Results

Phase	Α	В
Phase Change Time (sec)	17	0
Green Time (sec)	67	12
Phase Time (sec)	72	18
Phase Split	80%	20%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: VAR: Variable Phase

Reference

Phase

ANNEXURE D -

Results of 2028 Future Traffic Evaluation

Table 2.AM: OR TAMBO/ TAELO MOLOSIOA FORECAST AM PEAK TRANSYT EVALUATION

Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Green Tin Start	nes (Secs) End	Green Tim (sec)
102	NLTR	166	684	24	1	A	0.04	3.88			
205 108	ET SLTR	214 210	1950 934	11 22	1	A A	0.01	0.68			
111	WLTR	153	1950	12	0	A	0.01	0.56			
113 B 114 B	ET WT	90 90	0	0	0	A A	0	0.46			
T1 1	Taelo Molo	sioa & Leep	ile St	14	0	A	0.4%	9.17	Taelo Mo	losioa & L	eepile St
202	NLR	343	692	63	4	A	0.52	41.14			
202	ER	95	919	20	0	Ā	0.02	1.3			
205	ET	214	1950	11	0	А	0.01	0.68			
211 213 B	WLT ER	369 90	1950 0	19 0	0	A A	0.02	2.21			
213 B	NL	90	0	0	4	A	0	10.8			
T1 2		sioa & Davi	d	27	2	A	2.7%	57.36		losioa & E	David
302	Montoedi NLTR	12	610	2	0	A	0	0.02	Montoed		
305	ELTR	514	1950	26	0	A	0.05	4.71			
308	SLTR	442	656	67	6	A	0.69	68.7			
311 T1 3	WLTR Taelo Molo	121 sioa & Simo	1950 n Miva St	6 40	0	A A	0 3.5%	0.2 73.63	Taelo Mo	losioa & S	Simon Miya
	i dolo iliolo								St		
402	NTR	114	1950	6	0	A	0	0.18			
403 405	NL ETR	103 388	1750 972	69	0	A A	0.75	0.19 43.31			
405	EL	280	0	09	4	A	0.75	31.24			
408	SLTR	150	3900	4	0	A	0	0.08			
411 T1 4	WLTR Taelo Molo	12 sioa & OR T	942 ambo	1	0	A A	0 3.6%	0.01 75.01	Taelo Mo	losioa & C	OR Tambo
	1 aciu 1/1010		annoo		3		3.0 %	75.01	raeiu IVIO	10310a & C	
501	NR	283	925	31	3	Α	4.27	61.12			
502 503	NT NL	229 5	3900 925	6	0	A A	0	0.18			
503 504	ER	23	925	1	0	A	0	0.03			
505	ET	77	874	9	0	Α	0	0.43			
506	EL	1	950	0	0	A	0	0			-
507 508	SR ST	1 342	950 3900	0	0	A A	0	0.42			
509	SL	130	1750	7	0	A	0	0.3			
510	WR	29	874	3	0	A	0	0.06			
511 512	WT WL	26 299	874 925	32	0	A A	0.08	0.05			
T1 5		Access to		17	1	A	3.4%	70.31	Or Tamb	o & Acces	s to
									Cemetery		
602 603	NT NL	350 280	3900 1287	18 29	17	B	6.3 3.66	290.15 48.94	6	37	
604	ER	600	1207	73	14	В	15.07	360.84	43	0	
606	EL	185	0	0	14	В	0	103.84			
607 608	SR ST	91 588	660 3900	28 31	20 14	B	1.58 8.89	70.95 391.72	6	37 37	
613 B	ST	90	3900	0	14	В	0.09	48.29	0	37	
614 B	NT	90	0	0	1	Α	0	3.58			
T1 6	Or Tambo 8	& DM Selem	ela	35	13	В	62.9%	1318.31	Or Tambo	o & DM Se	elemela
701	NR	43	411	20	23	С	0.78	38.46	6	41	
702	NT	470	3900	27	12	В	7.67	295.66	6	41	
703	NL FR	445	841	53 84	11	B	8,24 +	249.15	47	0	
705	ET	290	1950	24	8	A	3.18	106.03	47	0	
706	EL	164	1003	16	1	A	0.56	9.01			
707 708	SR ST	119 997	905 3900	25 52	8 20	A B	2 19.38	49.21 867.69	6	41 41	
709	SL	40	1048	4	0	A	0.08	1.13	Ŭ	71	
710	WR	49	621	13	10	В	0.59	21.64	47	0	
711	WT WL	638 264	3900 828	26 32	8 15	A B	7.14 4.11	233.69 163.44	47	0	-
712 713 B	ST	264	828	32	15	B	4.11	47.56			
714 B	NT	90	0	0	12	В	0	40.65			
T1 7	0r Tambo 8	& M10		40	15	В	128.0%	2683.5	Or Tambo	o & M10	
802	NT	932	3900	26	0	А	0.05	4.24			
803	NL	66	1750	4	0	Α	0	0.07			
804 806	ER ER	60 22	403	20	2	A A	0.41	6.93 2.34			
806	SR	102	775	13	0	A	0.01	2.34			
808	ST	1610	3900	44	0	А	0.17	15.95			
813 B 814 B	ST NT	90 90	0	0	0	A A	0	0.89			
T1 8		Tannery S		33	0	A	1.5%	31.83	Or Tamb	o & Tanne	ry St
901 902	NR NT	19 954	607 3900	3	0	A A	0.05	0.05			
902	NL	954	3900 995	0	0	A	0.03	4.47			
905	ERT	1	378	0	0	A	0	0			
906 907	EL SR	47 98	770	6	0	A A	0	0.2		-	-
907	ST	1542	3900	46	0	A	0.19	16.66			
909	SL	54	0	0	0	Α	0	0.58			
910 911	WR WT	14	0 378	0	0	A A	0	0.14			
911 912	WL	1	378	6	0	A	0	0.01			
913 B	ST	90	0	0	0	Α	0	0.97			
914 B T1 9	NT Or Tambo /	90 Hartley St	0	0 33	0	A A	0 1.2%	0.42	Or Tamb	2 Horelo	v St
113		A Hartley St			0	A		24.63		o & Hartle	yoı
		Total	Total Time	Moor lar	Total Delay	Total	Time		Total Dr.	formance	Fuel
		Distance Travelled	Spent (PCU- hr/h)	Mean Journey Speed (km/h)	Total Delay (PCU-hrs/h)	Distance Travelled	Spent (Rass-			(\$/H)	Consumpt
hicle Type		(PCU-km/h)	,	1		(Pass-km/h)	(Pass- br/b)				(l/hr)
Total		6756.87 4464.6	121.81 74.71	55.47 59.76	2723.78 8.66	0	0			5.77 2.31	57
		6756.87 4464.6 280.44 1699.26	121.81 74.71 9.56 27.08	55.47 59.76 29.35 62.75	2723.78 8.66 0.72 3.3				134 99	5.77 2.31 .41 7.87	

Note: - L = Left, T = Through, R = Righturn M EVALUATION RESULTS 1A

R:\Tec

ical/Projects\127 MMM IPTN\17- OR

Table 2.PM: OR TAMBO/ TAELO MOLOSIOA FORECAST PM PEAK TRANSYT EVALUATION

Cycle 90

		-							0	Cycle	90
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Green Tin Start	nes (Secs) End	Green Time (sec)
102	NLTR	179	673	27	1	Α	0.05	4.82			
205	ET	108	1950	14	0	A	0.01	0.45			
108 111	SLTR WLTR	168 275	673 1950	25 19	1	A A	0.04	4.15			
113 B	ET	90	0	0	0	А	0	0.47			
114 B T1 1	WT Taelo Molo	90 sioa & Leep	0 ile St	0	0	A	0.6%	0.53 12.04	Taelo Mo	losioa & L	eenile St
		-							Taelo NIO		eepile ot
202 204	NLR ER	290 72	674	56 0	3	A A	0.36	27.57			
205	ET	108	1950	14	0	A	0.01	0.45			
211	WLT	383	1950	20	0	Α	0.02	2.4			
213 B 214 B	ER NL	90 90	0	0	0	A A	0	0.37			
T1 2		sioa & Davi	d	25	1	А	1.9%	39.65		losioa & D	David
302	Montoedi NLTR	12	861	1	0	A	0	0.01	Montoed	i	
305	ELTR	312	1950	16	0	A	0.02	1.52			
308	SLTR	245	680	36	1	A	0.1	10.11			
311 T1 3	WLTR Taelo Molo	319 sioa & Simo	1950 n Miva St	16 21	0	A A	0.02 0.6%	1.6 13.24	Taelo Mo	losioa & S	Simon Miya
	i dolo iliolo		-						St		
402	NTR	179 238	1950	9	0	A A	0	0.46			
403 405	NL ETR	238	1750 921	14 21	0	A	0.01	2.32			
406	EL	32	0	0	1	Α	0	0.47			
408 411	SLTR WLTR	181	3900 921	5	0	A	0	0.11 0.01			
411 T1 4		12 sioa & OR T		1 12	0	A A	0.2%	0.01 4.44	Taelo Mo	losioa & C	OR Tambo
501 502	NR NT	243 311	958 3900	25 8	3	A A	4.52 0	56.75 0.35			
502 503	NI NL	311 22	3900 958	2	0	A A	0	0.35			
504	ER	5	982	1	0	А	0	0			
505 506	ET	10 1	890	1	0	A	0	0.01			
506 507	EL SR	1	932 932	0	0	A A	0	0	1		-
508	ST	191	3900	5	0	А	0	0.13			
509 510	SL WR	43	1750 998	2	0	A A	0	0.03			
510	WT	80	998 890	9	0	A	0	0.35			
512	WL	184	958	19	0	Α	0.02	2.28			
T1 5	Or Tambo 8	Access to	Cemetery	12	1	A	2.9%	60.37	Or Tambe Cemetery	o & Acces	s to
602	NT	517	3900	27	19	в	10.45	493.64	6	37	31
603	NL	664	1272	59	17	В	17,30 +	506.08			
604	ER	240	1800	32	7	A	4.18 0	80.31	43	0	47
606 607	EL SR	59 106	565	38	25	A C	2.05	18.27 100.68	6	37	31
608	ST	299	3900	16	13	В	4.09	179.48	6	37	31
613 B 614 B	ST NT	90 90	0	0	7	A A	0 (+)	26.48 24.87			
T1 6		DM Selem		34	15	B	68.2%	1429.81	Or Tamb	o & DM Se	lemela
701 702	NR NT	146 928	449 3900	67 53	40 17	D B	3.72 17.84	212.22 798.51	6	37 37	31
703	NL	519	1360	38	1	A	0.98	22.17	Ŭ	0.	01
704	ER	353	1164	45	11	В	4.8	168.15	43	0	47
705 706	ET	373 126	1950 1069	29 12	7	A A	3.89 0.74	119.09 16.85	43	0	47
707	SR	113	357	65	41	D	2.91	169.79	6	37	31
708	ST	461	3900	29	19	B	9.96	416.14	6	37	31
709 710	SL WR	54 102	1323 1109	4	1	A A	0.21	2.87 39.7	43	0	47
711	WT	386	3900	15	6	А	3.55	106.34	43	0	47
712 713 B	WL ST	70 90	1367 0	5	1	A B	0.2	2.96 46.22			
713 B 714 B	NT	90	0	0	13	B	0	46.22			
T1 7	Or Tambo 8	& M10		36	13	В	103.8%	2178.07	Or Tamb	o & M10	
802	NT	1438	3900	39	0	A	0.13	11.87			
803	NL	60	1750	3	0	А	0	0.06			
804	ER	74	454	39	3	A	0.66	7.7	<u> </u>		
806 807	ER SR	101 32	0	0	3	A A	0	10.01 0.13			
808	ST	864	3900	24	0	А	0.04	3.58			
813 B 814 B	ST NT	90 90	0	0	0	A	0	0.37			
814 B T1 8	Or Tambo 8		•	29	0	A A	1.6%		Or Tamb	o & Tanne	ry St
									ļ	-	
	NR	19 1391	768	2	0	A A	0.12	0.03	<u> </u>		L
901 902				30	0	A	0.12	0			
901 902 903	NT NL	1391	975				0	0.03	1		
902 903 905	NT NL ERT	1	442	2	0	A					
902 903 905 906	NT NL ERT EL	1 10 102	442 674	15	0	А	0.01	1.35			
902 903 905	NT NL ERT	1	442		0 0 0		0.01 0 0.05	1.35 0.13 4.38			
902 903 905 906 907 908 908 909	NT NL ERT EL SR ST SL	1 10 102 26 919 22	442 674 0 3900 0	15 0 27 0	0 0 0	A A A A	0 0.05 0	0.13 4.38 0.1			
902 903 905 906 907 908 909 909 910	NT NL ERT EL SR ST SL WR	1 10 102 26 919	442 674 0 3900 0 0	15 0 27 0 0	0 0 0	A A A	0 0.05 0 0	0.13 4.38 0.1 2.1			
902 903 905 906 907 908 909 910 911 912	NT ERT EL SR ST SL WR WT WL	1 102 26 919 22 54	442 674 0 3900 0	15 0 27 0 0 26 0	0 0 0 1 1 1	A A A A	0 0.05 0 0 0.04 0	0.13 4.38 0.1			
902 903 905 906 907 908 909 910 911 912 913 B	NT NL ERT EL SR ST SL WR WT WL ST	1 10 26 919 22 54 1 58 90	442 674 0 3900 0 0 442 0 0	15 0 27 0 0 26 0 0	0 0 0 1 1 1 0	A A A A A A A	0 0.05 0 0.04 0 0	0.13 4.38 0.1 2.1 0.04 2.25 0.43			
902 903 905 906 907 908 909 910 911 912 913 B 914 B	NT NL ERT EL SR ST SL WR WL ST NT	1 102 26 919 22 54 1 58 90 90	442 674 0 3900 0 0 442 0	15 0 27 0 0 26 0 0 0 0 0	0 0 0 1 1 1 0 0	A A A A A A A A	0 0.05 0 0 0.04 0 0 0 0	0.13 4.38 0.1 2.1 0.04 2.25 0.43 0.71	Or Tamb		v St
902 903 905 906 907 908 909 910 911 912 913 B	NT NL ERT EL SR ST SL WR WT WL ST	1 102 26 919 22 54 1 58 90 90	442 674 0 3900 0 0 442 0 0	15 0 27 0 0 26 0 0	0 0 0 1 1 1 0	A A A A A A A	0 0.05 0 0.04 0 0 0 1.1%	0.13 4.38 0.1 2.1 0.04 2.25 0.43	Or Tambo	o & Hartle	y St
902 903 905 906 907 908 909 910 911 912 913 B 914 B 71 9	NT NL ERT EL SR ST SL WR WL ST NT	1 102 26 919 22 54 1 58 90 90	442 674 0 3900 0 0 442 0 0	15 0 27 0 0 26 0 0 0 0 0	0 0 0 1 1 1 0 0	A A A A A A A A	0 0.05 0 0.04 0 0 1.1% 1.1% 10tal Time Spent (Pass-	0.13 4.38 0.1 2.1 0.04 2.25 0.43 0.71	Total Per	o & Hartle	Fuel
902 903 905 907 907 908 909 910 911 911 913 914 8 914 8 71 9	NT NL ERT EL SR ST SL WR WL ST NT	1 10 102 266 919 22 54 1 58 90 90 0 Cotal Distance Travelled (FOL+km/b) 5612.71	442 674 0 3900 0 442 442 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 27 0 0 26 0 0 0 0 0 28 8 9eed (km/h) 54.03	0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2231.34	A A A A A A A A Total Distance Travelled (Pass-km/h) 0	0 0.05 0 0.04 0 0 0 1.1% Fotal Time Spent (Pass- br/h) 0	0.13 4.38 0.1 2.1 0.04 2.25 0.43 0.71	Total Per Index 209	formance ((\$/H) 8.02	Fuel Consumptior (I/hr) 492.66
902 903 906 906 907 908 910 911 911 913 913 914 914 914 914 914 914 914 914 914 914	NT NL ERT EL SR ST SL WR WL ST NT	1 102 266 919 22 54 1 58 900 90 90 8 4 Hartley St Distance Travelled (PCU-km/h) 5612.71 2361.41	442 674 0 3900 0 0 442 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 27 0 0 26 0 0 0 28 28 28 8 peed (km/h) 54.03 61.72	0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A A Total Distance Travelled (Pass-km/h)	0 0.05 0 0.04 0 0 1.1% Time Spent (Pass- br/h)	0.13 4.38 0.1 2.1 0.04 2.25 0.43 0.71	Total Per Index 209	formance (\$/H) 8 .02 9.25	Fuel Consumptior (I/hr) 492.66 162
902 903 905 907 907 908 909 910 911 911 913 914 913 8 914 8 71 9	NT NL ERT EL SR ST SL WR WL ST NT	1 10 102 266 919 22 54 1 58 90 90 0 Cotal Distance Travelled (FOL+km/b) 5612.71	442 674 0 3900 0 442 442 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 0 27 0 0 26 0 0 0 0 0 28 8 9eed (km/h) 54.03	0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2231.34	A A A A A A A A Total Distance Travelled (Pass-km/h) 0	0 0.05 0 0.04 0 0 0 1.1% Fotal Time Spent (Pass- br/h) 0	0.13 4.38 0.1 2.1 0.04 2.25 0.43 0.71	Total Per Index 209 609 74 132	formance ((\$/H) 8.02	Fuel Consumptior (I/hr) 492.66

Note: - L = Left, T = Through, R = Righturn ridonTraffic Study/TRANSYT/Forecast Evaluation/PM EVALUATION RESULTS 1A

R:\Te

ical/Projects\127 MMM IPTN\17- OR

		I					1	r		Cycle	90
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Green Tin Start	nes (Secs) End	Green Tim (sec)
202	NT	435	3900	13	0	Α	0.01	0.87			
203	NL	2	724	0	0	Α	0	0			
204	ER	95	198	48	8	Α	0.22	21.72			
206	EL	60	635	9	0	Α	0	0.49			
207	SR	120	485	25	1	A	0.04	4.07			
208 213 B	ST ST	1211 90	3900	33	0	A	0.08	7.77			
213 B 214 B	NT	90	0	0	0	A	0	0.18			
T2 2	Fort Hare 8		0	26	1	A	0.1%		Fort Hare	& Mkuhla	ne
504				10						10	
501 502	NR NTL	82 557	811 3900	16 42	14 19	B	0.78	36.35 342.9	80 10	10 40	
502	ELTR	192	3900	42	19	В	9.12 2.91	342.9	45	40	
505	SR	192	1950	1	7	A	0.09	2.53	43	10	
508	ST	1271	3900	87	33	С	33.88	1339.26	10	40	
510	WR	42	1256	7	17	В	0.66	23.99	45	75	
511	WLT	128	1950	14	15	В	1.86	63.28	45	75	
513 B	ST	90	0	0	29	С	0	83.6			
514 B	NT	90	0	0	33	С	0	94.82			
T2 5	Fort Hare 8	Gonyane		58	26	С	6.0%	2086.22	Fort Hare	& Gonya	ne
801	NR	54	344	32	46	D	1.23	76.24	79	32	
802	NT	408	3900	26	10	В	6.28	144.3	79	32	
803	NL	593 <	928	64	11	В	13,20 +	244.86			
804	ER	600	1687	67	30	С	12.51	584.84	32	53	
805	ET	240	1950	41	27	С	4.88	211.6	53	79	
806	EL	120	1750	23	25	C B	2.27	96.16	53	79	
807 808	SR ST	66 1320	906 3900	15 74	20 24	B C	0.74 34.87	40.52	79 79	32 32	
808	SL	24	1750	3	16	В	0.26	1092.67	79	32	
810	WR	114	1312	16	11	В	1.41	46.27	32	53	
811	WT	720	2925	82	38	D	18.41	878.47	53	79	
812	WL	48	974	5	6	Α	0.47	11.34			
813 B	NT	90	0	0	24	С	0	70.82			
814 B	ST	90	0	0	17	В	0	54.94			
T2 8	Fort Hare 8	Hamilton F	۲d	58	26	С	10.2%	3565.38	Fort Hare	& Hamilt	on Rd
901	NR	31	1135	4	16	В	0.51	20.83	71	16	
902	NT	437	3900	34	17	В	6.84	273.03	16	39	
903	NL	14	1750	2	16	В	0.2	7.42	16	39	
904	ER	16	833	6	47	D	0.38	25.49	45	50	
905	ET	447	3900	47	32	С	10.82	550.44	50	65	
906	EL SR	439 1027	1270 2080	42 74	2	A B	2.16	45.04	71	40	
907 908	SR ST	1027 947	2080 3208	74	40	D	22.31 23.95	848.19 1364.57	16	16 39	
908	SL	947 385	3208 1435	89 27	40	A	23.95	1364.57	16	39	
909	WR	365	1435	83	31	C A	10.66	561.28	45	50	
910	WT	602	3900	63	25	C C	14.92	621.92	43	65	
912	WL	103	1167	9	11	B	14.32	54.34	50		
913 B	ER	90	0	0	1	A	0	2.89			
914 B	NL	90	0	0	19	в	0	61.59			

Table 2.AM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

Table 2.AM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

Link Number 1001 1002 1003 1004 1005 1006 1007 1008	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation	Delay	Level of	Queue	Performance	Green Tin	nes (Secs)	Green Time
Number 1001 1002 1003 1004 1005 1006 1007 1008	NR NT	Link	Flow	Saturation			Queue	Performance			Green Time
1002 1003 1004 1005 1006 1007 1008	NT			(%)	(sec)	Service	(PCU)	Index (\$/H)	Start	End	(sec)
1003 1004 1005 1006 1007 1008		175		31	14	В	2.31	92.09	6	15	
1004 1005 1006 1007 1008		174	1950	22	18	В	2.62	114.17	15	44	2
1005 1006 1007 1008	NL	366 <	1069	34	9	A	3,12 +	138.96			
1006 1007 1008	ER	211	1800	29	24	C	4.12	196.4	50	62	1
1007 1008	ET	753 107	3900 1321	56 8	26 0	C A	19.06 0.08	783.55 1.18	62	0	2
1008	SR	20	1321	3	12	B	0.08	10.08	6	15	
	STL	88	1950	11	17	В	1.38	60.7	15	44	2
1010	WR	151	959	30	13	В	2.36	96.28	50	62	1
1011	WT	1244	3900	88	20	В	31.64	938.46	62	0	2
1012	WL	267	1626	16	0	A	0.16	2.01			
1013 B	NT	90	0		24	С	0	70.11			
1014 B T2 10	ST Harvey & R	90 hodes	0	0 53	47 19	D B	0 7.6%	133.5 2637.49	Harvey &	Rhodes	
12.10	na vey a n						1.070	2001.40	na vey a	Innoues	
1102	NLR	8		2	1	A	0.03	0.7			
1104	ER	17		3	0	A	0	0.06			
1105 1111	ET WLT	838 1166		21 30	0	A A	0.03	2.94 6.38			
		emsbok St		26	0	A	0.0%	10.08	Harvey &	Gemsbol	c St
1202	NLR	24	316	8	1	Α	0.1	1.99			
1204	ER	6		2	1	Α	0.02	0.34			
1205	ET	816		21	0	A	0.03	2.77			
1211 T2 12	WLT Harvey & S	1185 iteenbok St		30 26	0 0	A A	0.07 0.0%	6.63 11.73	Harvey &	Steenbok	St
1301	NR	25	282	9	3	A	0.13	3.88			
1303	NL	35		7	1	A	0.09	1.87			
1304	ER	5		1	3	Α	0.03	0.74			
1305	ET	767	3900	20	0	Α	0.02	2.41			
1311 T2 13	WLT Harvey & F	1191 ranken St	3900	31 26	0	A A	0.07 0.0%	6.72	Harvey &	Franken	St
12 13	nai vey or i			20			0.078	13.02	nai vey d	Trankens	
1902	NT	842	3900	46	12	В	10.67	415.97	6	40	3
1903	NL	847 <	1750	93	38	D	24,73 +	1197.52	6	40	3
1905	ET	518	3900	25	12	В	7.09	268.7	68	0	2
1906 1907	EL SR	205 341	852 1800	24 36	14 6	B	3 2.3	117.92 83.57	46	62	1
1907	SL	1244		76	12	B	30.53	746.49	40	02	
1913 B	SL	90	0	0	8	A	00.00	22.99			
1914 B	NT	90			8	Α	0	35.06			
T2 19	Fort St & H	anger		49	11	В	8.3%	2888.22	Fort St &	Hanger	
2004	ER	155	507	36	14	в	2.15	100.69	27	0	6
2005	ET	179	507	63	20	С	3.4	158.84	27	0	e
2008	SLT	1544		90	41	D	41.66	2271.14	6	21	1
2011	WLT	421	3900	16	2	A	2.71	58.43	27	0	6
2013 B	EL	90			0	A	0	0.38			
2014 B 2015 B	ST WT	90 90	0	0	23 16	C B	0	76 60.09			
		90 St Georges S		63	28	C	7.8%		Hanger &	St Georg	es St
2108	SLTR	1552	5850	30	0	A	0.06	5.58			
2100	WLT	104		16	4	Ā	0.82	22.5			
2114 B	ST	180	0	0	0	A	0	0.65			
	Hanger & D	ouglas		26	0		0.1%		Hanger &	Douglas	
2202	NT	251	890	48	2	Α	0.23	13.22			
2206	EL	251	852	29	14	В	3.76	150.58			
2210	WR	251	850	30	1	A	0.06	6.18			
2214 B T2 22	ST Harvey & P	180 eet Ave	0	0 29	2 5	A A	0.5%	9.48 179.46	Harvey &	Peet Ave	
	NLT	1331	3900	39	0	A	2.34	12.22			
2302	EL	48			0	A	2.34	0.28			
2302 2306											
2302 2306 2313 B	NT	180	0	0	0	Α	0	1.62			

Cvcle

...

Table 2.AM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

Green Times (Secs) Flow into Saturation Degree of Link Level of Green Time Approach Delay Performance Queue Link Flow ratio Number Movemen (sec) Service (PCU) Index (\$/H) Start End (sec) (PCU/H) (PCU/H) (%) 2402 NLTR 5850 1178.85 1675 33.08 46 40 54 2405 ELT 283 1950 26 10 в 3.58 129.25 52 0 38 2411 2413 B WRT 363 3900 16 9 А 4.03 149.75 52 0 38 NTR 180 0 13 B B 02 1550.35 Harvey & St Georges St 4.5% T2 24 Harvey & St Georges St 41 15 2502 NRT 5850 29 A 0.06 5.49 1592 0 2505 FT Δ 0.05 1.08 12 631 2506 EL 38 631 6 Α 0.19 4.02 2510 WR 20 A 0.09 1.91 631 2 2513 B NT 90 А 0.31 0 0 0.0% 12.81 Harvey & Bastion T2 25 Harvey & Bastion А 27 0 1701 NR 18 739 ۵ 0.03 0 1702 NT 952 3900 27 0 Δ 0.05 4.57 1703 NL 19 0 0 Α 0.09 0 0 47 Δ 1705 ELTR 506 9 0 0.48 1707 SR 330 766 43 2 Δ 0.16 16.23 1708 ST 973 3900 30 0 Α 0.07 5.44 1709 121 0 0.68 SL 0 0 0 1711 WLTR 77 506 15 Α 0.01 1.37 1713 B ST 90 0 0 0 Α 0.5 C 1714 B 90 0 0 A NT 0 0.43 0 29.82 Or Tambo & Goede Hoop T2 17 Or Tambo & Goede Hoop 26 0 Α 0.1% 1601 NR 175 22 Α 0.03 3.19 786 1602 NT 975 3900 27 0 A 0.05 4.69 1608 ST 883 3900 0 Δ 0.04 3.76 25 1609 SL 114 1750 0 Α 0 0.23 1610 WR 28 552 A 0.14 0 C 1612 WL 786 29 А 0.06 5.92 228 1613 B ST 90 0 0 0 Α 0.38 0 1614 B NT 90 ſ 0 A A 0.43 T2 16 Or Tambo & De Waal Rd 23 0 0.1% 18.74 Or Tambo & De Waal Rd NT 1034 86 1565.61 1502 3900 42 D 29.79 15 44 29 1503 155 1750 21 С 15 44 NL 27 2.69 123.05 29 1504 ER 293 1800 31 13 в 4.22 162.62 44 0 46 44 46 1506 EL 194 1800 21 12 2.61 99.12 0 19 в 1507 118 698 34 1.65 95.71 15 15 SR 1508 ST 924 3900 52 16 в 17.18 623.74 15 15 1513 B ST 90 0 16 в 42.47 0 0 1514 B NT 90 45 135.94 D T2 15 Or Tambo & Voortsig 55 26 С 8.2% 2848.26 Or Tambo & Voortsig 1401 NR 109 51 37 D 148.8 385 2.42 0 10 10 1402 768 49 17.6 573.63 10 49 39 NT 3900 20 1403 NL 1358 0 0.01 0.23 2 2 18 49 69 20 1404 ER 6 933 0.09 4.44 1405 ET 422 3900 44 42 9.86 625.93 69 0 21 1406 EL 368 1240 30 2.07 61.44 3 Δ 1407 SR 371 1001 67 18 в 6.04 293.25 10 10 49 1408 ST 1200 3260 89 43 31.34 1830.73 10 39 1409 SL 1338 0.21 6.48 298 22 1410 WR 492 2153 49 17 в 7.75 360.03 49 69 20 1411 WT 811 85 43 21.47 69 21 3900 1253.65 0 1412 WL 546 1423 0.12 11.94 38 1413 B ST 90 0 0 51 150.91 D B 0 1414 B NT 90 15 40.58 5362.04 Or Tambo & Harvey T2 14 Or Tambo & Harvey 58 26 С 15.4% 2601 NR 23 603 А 0.07 0 0 NT 755 A 0.03 2.74 2602 3900 22 0 2603 NL 17 Δ 0.06 0 0 0 2605 ERT 35 452 Α 0.14 2.92 8 2606 EL 0 0.06 0 2607 SR 16 811 Δ 0.02 0 2608 SLT 1715 3900 46 0 Α 0.2 18.93 114 36 261 WRT 452 6 1.67 33.09 2612 48 12.89 WL A 2613 B ST 90 0 0 0 Α 0 0.99 0 A NT 90 0 0 2614 E 0 0.33

90 90

Cvcle

T2 26

Or Tambo & Francken St

34

А

0.2%

72.1 Or Tambo & Francken St

Table 2.AM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

90 90

Cycle

									-	Cycle	90
Link	Anneach	Flow into	Saturation	Degree of	Delevi	Level of	Queue	Performance	Green Tin	nes (Secs)	Crean Time
Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	Delay (sec)	Level of Service	(PCU)	Index (\$/H)	Start	End	Green Time (sec)
2702	NT	794	3900	23	0	A	0.03	2.99			
2703	NL	5	1750	0	0	Α	0	0			
2704	ER	13	485	3	1	A	0.06	1.24			
2706 2707	EL SR	8	485 805	2	1	A A	0.04	0.67			
2708	ST	1462	3900	40	0	A	0.13	12.38			
2713 B	ST	90	0	0	0	Α	0	0.76			
2714 B	NT On Tombo I	90	0	0 31	0	A A	0	0.34	On Tamb	. 9 Matte	
T2 27	Or Tambo 8	x watkey		31	U	^	0.1%	18.39	Or Tambe	o & Watke	У
2802	NTL	777	3900	22	0	Α	0.03	2.85			
2806	EL	5	809	1	0	Α	0	0			
2808	ST	1397	3900	38	0		0.12	11.03			
2813 B 2814 B	ST NT	90 90	0	0	0	A A	0	0.71			
T2 28	Or Tambo a	Bisseaux		30	0	Α	0.0%	14.92	Or Tamb	o & Bissea	aux
		1									
2902 2905	NLT ER	772	3900 481	22	0	A A	0.03	2.81 0.03			
2905	SRT	1408	3900	238	0	A	0.12	11.25			
2913 B	ST	90	0	0	0	A	0.12	0.72			
2914 B	NT	90	0	0	0	Α	0	0.33			
T2 29	Or Tambo 8	& Papenfus	St	30	0	А	0.0%	15.14	Or Tambo	o & Papen	fus St
3002	NLTR	717	3900	55	20	С	12.94	547.86	0	27	
3004	ER	203	960	63	20	В	4.58	168.35	33	56	:
3006 3007	ELT SR	379 89	3900 1030	29 11	10	B	2.27 0.79	138.62 21.11	33 56	56 0	
3007	SK	1301	3900	47	4	A	14.57	21.11 242.62	56	0	
3010	WR	143	627	68	44	D	3.85	227.16	33	56	
3011	WLT	257	1950	40	25	С	5.05	244.96	33	56	
3013 B	ST	90 90	0	0	5	A	0	19.1			
3014 B T2 30	NT Or Tambo 8		0	0 44	38 13	D B	5.0%	112.86 1722.64	Or Tambo	o & Falck	St
3102	NLT	704	1950	41	1	Α	0.14	12.38			
3105	ELR	86	551	16	1	A	0.01	1.44			
3108 3113 B	SRT ST	1157 90	1950 0	64 0	4	A A	20.34	278.77			
3114 B	NT	90	0	0	1	Â	0	1.58			
T2 31	Or Tambo 8	Cross Rd		49	2	Α	0.9%	304.94	Or Tambo	o & Cross	Rd
2204	ND	24	272	10	25	D	0.71	40.47	0	50	
3201 3202	NR NT	31 593	1950	18 55	35 9	A	7.64	40.47 231.97	6	50 50	
3203	NL	172	978	18	4	A	1.75	38.91		00	
3204	ER	87	569	29	46	D	2.19	142.23	56	0	;
3205	ELT	582 <	1950	57	25	С	13,94 +	587.15	56	0	
3207 3208	SR ST	25 911 <	612 1950	6 81	15 24	B	0.43	15.94 905.06	6	50 50	
3209	SL	275	978	28	5	A	23,03 +	73.34	0	50	
3210	WR	121	691	34	31	С	2.57	137.48	56	0	
3211	WT	622	1950	61	18	В	11.36	457.23	56	0	
3212	WL	64	814	8	10	В	0.77	28.1			
3213 B 3214 B	ST NT	90 < 90	0	0	19 3	B	(+)	64.27 11.74			
T2 32		Rhodes A		43	14	В	7.9%		Or Tamb	o & Rhode	s Ave
										1	
3302 3305	NLTR ELTR	794 18	3900 564	23	0	A A	0.03	2.98			
3305	SLTR	1007	3900	28	0	A	0.06	5.05			
3311	WLTR	107	564	19	1	Α	0.02	2.22			
3313 B	ST	90	0	0	0	A	0	0.45			
3314 B T2 33	NT Or Tambo 8	90 Goddar St	0	0 23	0	A A	0.0%	0.34	Or Tame	o & Godda	ar St
12 33		s Gouuar Si	·	23	0	<u> </u>	0.0%	11.09			
3401	NR	12	666	3	11	В	0.15	5.59	6		
3402	NLT	522	1950	44	10	В	6.99	243.03	6	48	
3407	SR	37	843	25	8	A	0.71	12.46	6	48	
3408 3409	ST SL	606 351	1950 1750	51 33	8	A A	4.92 2.12	202.27 79.23	6	48 48	<u></u>
3403	WR	128	1730	13	10	В	1.57	57.36	54	40	
0410		484	1950	46	14	В	7.45	284.22	54	0	
3411	WLT		0	0	5	A	0	16.32			
3411 3413 B	ST	90			33	С	0 2.8%	84.15 984.63	Or Tomb		orges St
3411 3413 B 3414 B	ST NT	90	0 s St	0		в				o & St Geo	
3411 3413 B	ST	90		0 39	10	В	2.0%		Or Tallib	o & St Geo	
3411 3413 B 3414 B T2 34 3502	ST NT Or Tambo 8 NLR	90 & St George 420	e s St 1950	39 37	10 11	В	5.59	196.04	6	46	
3411 3413 B 3414 B T2 34 3502 3505	ST NT Or Tambo 8 NLR ET	90 & St George 420 606	s St 1950 1950	39 37 63	10 11 24	B C	5.59 13.66	196.04 564.87	6 52	46	
3411 3413 B 3414 B T2 34 3502	ST NT Or Tambo 8 NLR	90 & St George 420	e s St 1950	39 37	10 11	В	5.59	196.04	6	46	
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90 90	s St 1950 1950 1950 0 0	39 37 63 37 0 0	10 11 24 9 11 23	B C A B C	5.59 13.66 3.94 0 0	196.04 564.87 116.95 38.1 78.39	6 52 52	46 0 0	
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90	s St 1950 1950 1950 0 0	39 37 63 37 0	10 11 24 9 11	B C A B	5.59 13.66 3.94 0 0 2.9%	196.04 564.87 116.95 38.1	6 52 52	46	
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B	ST NT Or Tambo 8 NLR ET WT ET WT	90 3 St George 420 606 317 90 90 s St & Frase Total Distance Travelled	s St 1950 1950 1950 0 0 0 0 0 0 0 Total Time Spent (PCU-	39 37 63 37 0 0 43 Mean Journey	10 11 24 9 11 23 16 Total Delay	B C A B C B Total Distance	5.59 13.66 3.94 0 0	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg	46 0 0 ges St & Fr	raser Ln Fuel
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B T2 35	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90 90 5 St & Frase Total Distance	s St 1950 1950 0 0 r Ln Total Time	39 37 63 37 0 0 43	10 11 24 9 11 23 16	B C A B C B Total	5.59 13.66 3.94 0 2.9% 1 otal Time Spent (Pass-	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg	46 0 0 es St & Fr	raser Ln Fuel
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B T2 35	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90 90 s St & Frase Total Distance Travelled (PCU-km/h) 14382.22	s St <u>1950</u> <u>1950</u> <u>0</u> or t Ln Total Time Spent (PCU- hr/h) 396.26	39 37 63 37 0 0 43 Mean Journey Speed (km/h) 36.29	10 11 24 9 11 23 16 Total Delay (PCU-hrs/h) 25567.94	B C A B C B J Distance Travelled	5.59 13.66 3.94 0 2.9% 10tai Time Spent	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg Total Per Index 3478	46 0 0 ges St & Fr formance (\$/H) 39.26	raser Ln Fuel Consumpti (l/hr) 2025.
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3513 B 3514 B T2 35 ************************************	ST NT Or Tambo 8 NLR ET WT ET WT	90 2 St George 420 606 317 90 90 s St & Frase Travelled (PCU-km/h) 14382.22 4823.11	s St 1950 1950 0 0 or Ln Total Time Spent (PCU- hr/h) 396.26 101.52	39 37 63 37 0 0 43 43 Mean Journey Speed (km/h) 36.29 47.51	10 11 24 9 11 23 16 Total Delay (PCU-hrs/h) 25567.94 27.55	B C A B C B Total Distance Travelled (Pass-km/h)	5.59 13.66 3.94 0 2.9% 1 otal Time Spent (Pass- br/h)	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg Total Per Index 3478 397	46 0 0 ges St & Fr formance c (\$/H) 39.26 0.58	raser Ln Fuel Consumptio (l/hr) 2025. 3
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B T2 35 ************************************	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90 90 5 St & Frase Total Distance Travelled (PCU-wnh) 14382.22 4823.11 406.96	s St 1950 1950 0 0 0 0 0 0 0 0 0 0 0 0 0	39 37 63 37 0 0 43 Mean Journey Speed (km/h) 36.29 47.51 29.94	10 11 24 9 11 23 16 Total Delay (PCU-hrs/h) 25567.94 27.55 2.37	B C A B C B Total Distance Travelled (Pass-km/h)	5.59 13.66 3.94 0 2.9% 1 otal Time Spent (Pass- br/h)	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg Index 3478 397/ 305	46 0 0 ges St & Fr formance (\$/H) 39.26 0.58 5.08	Fuel Consumptie (I/hr) 2025. 3
3411 3414 В 3414 В 72 34 3502 3501 3511 В 3514 В 72 35 2512 В 2612	ST NT Or Tambo 8 NLR ET WT ET WT	90 2 St George 420 606 317 90 90 s St & Frase Travelled (PCU-km/h) 14382.22 4823.11	s St 1950 1950 0 0 or Ln Total Time Spent (PCU- hr/h) 396.26 101.52	39 37 63 37 0 0 43 43 Mean Journey Speed (km/h) 36.29 47.51	10 11 24 9 11 23 16 Total Delay (PCU-hrs/h) 25567.94 27.55	B C A B C B Total Distance Travelled (Pass-km/h)	5.59 13.66 3.94 0 2.9% 1 otal Time Spent (Pass- br/h)	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg Total Per Index 3476 397/ 300 724	46 0 0 ges St & Fr formance c (\$/H) 39.26 0.58	raser Ln Fuel Consumptio (I/hr) 2025. 3 3
3411 3413 B 3414 B T2 34 3502 3505 3511 3513 B 3514 B T2 35	ST NT Or Tambo 8 NLR ET WT ET WT	90 & St George 420 606 317 90 90 90 90 90 90 90 90 90 90	s St 1950 1950 0 0 or Ln Total Time Spent (PCU- hr/h) 396.26 101.52 13.59	39 37 63 37 0 0 43 Mean Journey Speed (km/h) 36.29 47.51 29.94 28.64	10 11 24 9 11 23 16 Total Delay (PCU-hrs/h) 25567.94 27.55 2.37 54.03	B C A B C B Total Distance Travelled (Pass-km/h)	5.59 13.66 3.94 0 2.9% 1 otal Time Spent (Pass- br/h)	196.04 564.87 116.95 38.1 78.39	6 52 52 St Georg Index 3476 397 300 724 293 320	46 0 0 jes St & Fi formance : (\$/H) 39.26 0.58 5.08 13.8	Fuel Consumptio

R:\Technical/Projects\127 MMM IPTN17- OR Tambo Corridor\Traffic Study\TRANSYT\Forecast Evaluation\AM EVALUATION RESULTS 1B

			n			1	1			Cycle	90
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Green Tin Start	nes (Secs) End	Green Tim (sec)
202	NT	771	3900	22	0	А	0.03	2.8			
203	NL	94	742	13	1	Α	1.12	5.16			
204	ER	44	307	14	1	Α	0.01	1.2			
206	EL	97	561	17	1	Α	0.02	1.81			
207	SR	35	411	9	0	Α	0	0.4			
208	ST	383	3900	12	0	Α	0.01	0.68			
213 B 214 B	ST NT	90 90	0	0	0	A A	0	0.33			
	Fort Hare &		0	16	0	A	0.0%		Fort Hare	& Mkuhla	ine
			r								
501	NR	104	1219	14	3	A	0.32	11.03	80	10	
502	NTL	857	3900	61	21	C	14.02	570.68	10	40	
505 507	ELTR SR	62 13	1950 897	7	14	B	0.86	29.27 5.47	45 80	75 10	
507	SK	469	3900	2	20	B	9.88	304.41	10	40	
508	WR	469	3900 1517	30		В	9.88	19.95	45	40	
511	WLT	91	1950	10	14	В	1.3	43.84	45	75	
513 B	ST	90	0	0	33	С	0	95.88	10		
514 B	NT	90	0	0	20	В	0	58.41			
T2 5	Fort Hare &	Gonyane		40	19	В	3.3%	1138.94	Fort Hare	& Gonya	ne
801	NR	72	1085	14	23	С	1.26	54.34	79	32	
802	NT	846	3900	49	15	В	17.26	444.63	79	32	
803	NL	390	1638	24	0	Α	0.04	3.72			
804	ER	528	2226	44	13	В	7.36	239.24	32	53	
805	ET	180	1950	31	26	С	3.52	149.74	53	79	
806	EL	120	1750	23	25	С	2.27	96.16	53	79	
807	SR	60	527	23	22	С	0.67	40.98	79	32	
808	ST	432	3900	27	19	B	10.76	292.42	79	32	
809	SL	12	1750	1	13	В	0.12	5.02	79	32	
810 811	WR WT	60 216	1411 2925	8 25	11 24	B	0.72	22.49 171.66	32 53	53 79	
812	WL	48	1425	25	24	A	4.12	1/1.66	53	79	
813 B	NT	90	1423	0	29	C	0.13	83.52			
814 B	ST	90	0	0	23	A	0	27.01			
T2 8	Fort Hare &	Hamilton F	Rd	33	15	В	4.7%	1632.5	Fort Hare	& Hamilt	on Rd
901	NR	62	1340	6	7	A	0.55	24.24	71	16	
902	NT	588	3900	45	24	С	10.22	487.78	16	39	
903	NL	19	1750	3	22	С	0.35	13.25	16	39	
904	ER	35	1087	11	42	D	0.82	51.74	45	50	
905	ET	443	3900	46	38	D	10.65	618.7	50	65	
906	EL	608	1345	52	3	Α	11,88 +	144.72			
907	SR	284	2253	23	8	Α	3.98	119.86	71	16	
908	ST	372	2400	46	17	В	5.22	237.88	16	39	
909	SL	505	1519	33	2	A	6.44	70.56			
910	WR	330	1783	62	23	C	6.87	317.53	45	50	
911	WT	401	3900	42	23	C A	9	381.59	50	65	
040	WL	67	1402	5	1		0.41	6.15	ļ		L
912	ED	00	<u>م</u>	0	2	A					
912 913 B 914 B	ER NL	90 90	0	0	3	A B	(+)	15.62			

Table 4.PM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

Table 4.PM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

	30	
Cycle	90	

										Cycle	90
				_					Green Tin	nes (Secs)	
Link Number	Approach Movement	Flow into Link (PCU/H)	Saturation Flow (PCU/H)	Degree of Saturation (%)	Delay (sec)	Level of Service	Queue (PCU)	Performance Index (\$/H)	Start	End	Green Tim (sec)
1001	NR	328	1449	45	16	в	4.38	195.58	6	15	
1001	NT	23	1950	3	24	С	0.4	18.78	15	44	
1002	NL	236	1188	20	3	A	1.21	36.1			
1004	ER	280	1800	39	12	В	3.84	145.2	50	62	
1005	ET	821	3900	60	33	С	21.57	1030.59	62	0	
1006	EL	16	1686	1	0	Α	0	0			
1007	SR	137	1659	17	13	В	1.84	72.74	6	15	
1008	STL	146	1950	19	18	В	2.37	104.99	15	44	
1010	WR	19	931	4	10	Α	0.22	9.45	50	62	
1011	WT	689	3900	51	6	Α	5.2	156.97	62	0	
1012	WL	89	1574	6	0	A	0.04	0.58			
1013 B	NT	90	0	0	26	С	0	75.97			
1014 B T2 10	ST Harvey & R	90 hodes	0	0 41	48 18	D B	0 5.7%	132.99 1979.94	Harvey &	Rhodes	
		10									
1102	NLR	40	601	7	0	A	0	0.24			
1104 1105	ER ET	6 1032	428 3900	1 26	0	A A	0.05	0.01 4.76			
1105	WLT	781	3900	26	0	A	0.05	2.51			
T2 11	Harvey & G		3900	20	0	A	0.03	7.52	Harvey 9	Gemsbol	St
	-		-						naivey &	Genisbol	. 31
1202	NLR	40	362	<u>11</u>	1	A	0.15	2.42			
1204	ER ET	5 1016	436 3900	26	0	A A	0.05	4.59			
1205 1211	WLT	746	3900	26	0	A	0.05	2.26			
T2 12	Harvey & S		3300	23	0	Â	0.0%		Harvey &	Steenbok	St
1301	NR	210	273	77	30	С	4.3	225.26	1		
1303	NL	24	846	3	0	Α	0	0.04			
1304	ER	8	446	2	0	Α	0	0.02			
1305	ET	1057	3900	27	0	Α	0.05	5.04			
1311 T2 13	WLT Harvey & F	702 ranken St	3900	18 29	0 3	A A	0.02 0.7%	1.97 232.33	Harvey &	Franken	St
1902	NT	746	3000	53	6	Α	4.33	170.88	6	40	
1903	NL	961	2650	69	7	Α	6.14	278.9	6	40	
1905	ET	587	3900	29	12	В	8.21	311.71	68	0	
1906	EL	374	1020	37	7	Α	4.16	133.03			
1907	SR	326	1800	35	7	Α	2.35	89.93	46	62	
1909	SL	781	1750	50	1	Α	13.49	76.44			
1913 B	SL	90	0	0	1	Α	0	3.6			
1914 B	NT	90	0	0	1	A	0	6.23			
T2 19	Fort St & H	anger		47	6	A	3.1%	1070.72	Fort St &	Hanger	
2004	ER	50	1084	15	19	В	3.14	39.79	27	0	
2005	ET	132	1169	13	22	С	2.73	119.92	27	0	
2008	SLT	1263	5850	74	24	С	27.36	1145.24	6	21	
2011	WLT	599	3900	21	2	A	3.57	70.72	27	0	
2013 B	EL	90	0	0	0	A	0	1.22			
2014 B	ST	90	0	0	7	A	0	27.06			
2015 B T2 20	WT Hanger & S	90 St Georges S	0 St	0 47	29 17	C B	0 4.3%	93.45 1497.4	Hanger &	St Georg	es St
2108	SLTR	1290	5850	25	0	A	0.04	3.7			
2111		100		14	2	Α	0.57	12.02			
	ST	180	0	0	0	Α	0	0.52			
2114 B	Hanger & D	ouglas		21	0	A	0.0%	16.24	Hanger &	Douglas	
		054	945	46	2	Α	0.19	11.12			
	NT	251			1	A	0.05	5.31			
T2 21	_	251	905	28				19.32	1	1	
T2 21 2202	NT			28 46	3	Α	0.19				
T2 21 2202 2206 2210 2214 B	NT EL WR ST	251 251 180		46 0	2	Α	0	7.97		Peet Ave	
T2 21 2202 2206 2210 2214 B T2 22	NT EL WR ST Harvey & P	251 251 180 eet Ave	547 0	46 0 32	2 2	A A	0 0.1%	7.97 43.72	Harvey &	Peet Ave	
T2 21 2202 2210 2210 2214 B T2 22 2302	NT EL WR ST Harvey & P	251 251 180 eet Ave 627	547 0 3900	46 0 32 21	2 2 0	A A A	0 0.1% 0.03	7.97 43.72 2.1		Peet Ave	
T2 21 2202 2206 2210 2214 B T2 22 2302 2306	NT EL WR ST Harvey & P	251 251 180 eet Ave 627 61	547 0 3900 822	46 0 32 21 7	2 2 0 0	A A A A	0 0.1% 0.03 0	7.97 43.72 2.1 0.3		Peet Ave	
T2 21 2202 2206 2210 2214 B T2 22 2302 2306 2313 B	NT EL WR ST Harvey & P	251 251 180 eet Ave 627 61 180	547 0 3900 822	46 0 32 21	2 2 0	A A A A A	0 0.1% 0.03	7.97 43.72 2.1 0.3 0.6			

Table 4.PM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

عر Cycle 90

										Cycle	90
									Green Tin	nes (Secs)	
Link	Approach	Flow into	Saturation	Degree of	Delay	Level of	Queue	Performance	0.00		Green Time
Number	Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	(sec)	Service	(PCU)	Index (\$/H)	Start	End	(sec)
		(FCO/H)	(100/11)	(70)							
2402	NLTR	1205	5850	73	30	С	30.78	1371.78	6	22	16
2405	ELT	127	1950	8	1	Α	0.57	11.42	28	0	62
2411	WRT	601	3900	19	1	A	1.74	39.94	28	0	62
2413 B	NTR Harvey & S	180	0	0 48	30 20	C C	0	187.54		St Georg	oc St
T2 24	naivey a 3	i deorges a	21	40	20	Ŭ	4.6%	1010.00	naivey a	St Georg	65 31
2502	NRT	1591	5850	29	0	A	0.06	5.48			
2505	ET	12	637	2	1	A	0.05	1			
2506	EL	89	637	14	2	Α	0.48	10.68			
2510	WR	61	637	10	2	Α	0.29	6.57			
2513 B T2 25	NT Harvey & B	90 astion	0	0 26	0	A A	0.1%	0.31	Harvey &	Bastion	
12 25	naivey a D	4311011		20	U		0.1 /6	24.04	nan vey d	Dastion	
1701	NR	39	803	5	0	А	0	0.13			
1702	NT	1112	3900	31	0	Α	0.07	6.36			
1703	NL	2	0	0	0	Α	0	0.01			
1705	ELTR	164	538	30	1	A	0.07	6.68			
1707	SR	67	735	9	0	A A	0	0.46		├ ───┤	
1708 1709	ST SL	807 58	3900 1750	23	0	A	0.03	3.09			
1703	WLTR	44	538	8	0	A	0	0.36			
1713 B	ST	90	000	0	0	A	0	0.34			
1714 B	NT	90	0	0	0	Α	0	0.52			
T2 17	Or Tambo 8	& Goede Ho	ор	24	0	Α	0.1%	18.01	Or Tambo	o & Goede	Ноор
1601	NR	474	797	60	10	В	11,68 +	265.36		r	
1601	NT	1199	3900	33	0	A	0.08	7.59			
1608	ST	831	3900	24	0	A	0.04	3.3			
1609	SL	34	1750	2	0	А	0	0.02			
1610	WR	14	514	3	0	A	0	0.04		ļ	
1612	WL	124	797	16	0	A	0.01	1.43			
1613 B 1614 B	ST NT	90 90	0	0	0	A A	0	0.36		-	
T2 16	Or Tambo 8			32	2	A	0.8%		Or Tambo	o & De Wa	al Rd
1502	NT	1148	3900	65	31	С	25.7	1335.27	21	58	37
1503	NL	10	1750	1	3	A	0.05	1.27		58	37
1504 1506	ER EL	397 500	1800 1800	51 64	21 24	с с	7.43 10.29	329.85 472.15	64 64	0	26
1507	SR	82	1502	8	6	A	0.73	23.53	6	21	15
1508	ST	856	3900	37	7	А	10.62	301.62			15
1513 B	ST	90	0	0	7	Α	0	19.77			
1514 B	NT	90	0	0	17	B	0	59.59			
T2 15	Or Tambo 8	& voortsig		50	21	С	7.3%	2543.05	Or Tambo	o & Voorts	sig
1401	NR	286	634	83	51	D	8.75	522.17	0	16	16
1402	NT	829	3900	64	27	С	20.53	801.55	16	48	32
1403	NL	410	1330	31	2	А	2.67	41.68			
1404	ER	354	885	84	41	D	9,96 +	538.19		60	12
1405	ET	385 229	3900	29	31 0	C	8.57	444.87	60	0	30
1406 1407	SR	229	1511 1133	15 34	11	A B	0.01	1.36 98.45	0	16	16
1407	ST	842	2932	87	42	D	23.16	1266.25	16		32
1409	SL	8	1524	1	0	Α	0.02	0.31			
1410	WR	14		2	13	В	0.18	7.79		60	12
1411	WT	701		52	25	С	14.11	677.71		0	30
1412	WL	540		48	9	A	6,97 +	229.96			
1413 B 1414 B	ST NT	90 90	0	0	49 37	D D	0	146.91 114.67		<u>├</u>	
T2 14	Or Tambo 8		. 0	55	27	C	14.1%		Or Tambo	o & Harve	y
		-			0						
2601	NR	24		3	0	A	0	0.05	ļ		
2602 2603	NT	961	3900	32	0	A	0.07	5.77		───	
2603	NL	192		0	0	A	0	1.15		<u>├</u>	
	FRT	0		0	0	A	0	0.01			
2605	ERT EL	1	0					0			
	ERT EL SR	1		0	0	Α	0	0			
2605 2606 2607 2608	EL SR SLT	1 1059	726 3900	0 29	0	A	0.06	5.68			
2605 2606 2607 2608 2611	EL SR SLT WRT	1 1059 74	726 3900 474	0 29 24	0	A A	0.06 0.42	5.68 5.48			
2605 2606 2607 2608 2611 2612	EL SR SLT WRT WL	1 1059 74 40	726 3900 474 0	0 29 24 0	0 2 2	A A A	0.06 0.42 0	5.68 5.48 2.76			
2605 2606 2607 2608 2611 2612 2613 B	EL SR SLT WRT WL ST	1 1059 74 40 90	726 3900 474 0 0	0 29 24 0 0	0 2 2 0	A A A A	0.06 0.42 0	5.68 5.48 2.76 0.48			
2605 2606 2607 2608 2611 2612	EL SR SLT WRT WL	1 1059 74 40 90 90	726 3900 474 0 0 0	0 29 24 0	0 2 2	A A A	0.06 0.42 0	5.68 5.48 2.76 0.48 0.54		o & Franci	ken St

R:\Technicaf\Projects\127 MMM IPTN\17- OR Tambo Corridor\Traffic Study\TRANSYT\Forecast Evaluation\PM EVALUATION RESULTS 1B

Table 4.PM: Or Tambo/ Harvey & Hanger FORECAST AM PEAK TRANSYT EVALUATION

90 90

Cycle

										Cycle	90
Link	Annaach	Flow into	Saturation	Degree of	Delay	Level of	Queue	Performance	Green Tin	nes (Secs)	Crean Time
Number	Approach Movement	Link (PCU/H)	Flow (PCU/H)	Saturation (%)	(sec)	Service	(PCU)	Index (\$/H)	Start	End	Green Time (sec)
2702	NT	4477	3900		0	Α	0.08	7.00			
2702	NL	1177	1750	32	0	A	0.08	7.26			
2704	ER	5	496	1	0	Α	0	0.01			
2706	EL	5	721	1	0	A	0	0			
2707 2708	SR ST	935	721 3900	26	0	A A	0.05	4.27			
2713 B	ST	90	0	0	0	Α	0	0.41			
2714 B	NT	90	0	0	0	A A	0	0.56	0. T	0.14//1	
T2 27	Or Tambo 8	x watkey		27	0	^	0.0%	12.51	Orlamb	o & Watke	У
2802	NTL	1178	3900	33	0	A	0.08	7.27			
2806	EL	2	721	0	0	Α	0	0			
2808 2813 B	ST ST	935 90	3900 0	26 0	0	A A	0.05	4.28			
2814 B	NT	90	0	0	0	Ā	0	0.56			
T2 28	Or Tambo 8	& Bisseaux		28	0	A	0.0%	12.52	Or Tamb	o & Bissea	aux
2902	NLT	1234	3900	34	0	A	0.09	8.13			
2905	ER	251	483	52	4	A	0.91	34.62			
2908	SRT	935	3900	26	0	Α	0.05	4.28			
2913 B 2914 B	ST NT	90 90	0	0	0	A	0	0.41 0.59			
T2 29	Or Tambo 8			31	1	A	0.1%	48.03	Or Tamb	o & Papen	fus St
			-							-	
3002	NLTR	1150	3900	54	11	B	14.11	516.34	6	46	
3004 3006	ER ELT	184 332	1182 3900	27 15	29 10	B	4.52 7.03	208.85 184.79	52 52	0	
3007	SR	43	204	36	30	С	0.9	51.75	6	46	
3008	SLT	890	3900	43	14	В	19.72	578.61	6	46	
3010 3011	WR WLT	193 254	1341 1950	25 23	15 10	B	2.88 3.14	117.57 113.36	52 52	0	
3011 B	ST	234	0	23	21	C	3.14	75.49			
3014 B	NT	90	0	0	5	A	0	16.37	a -		
T2 30	Or Tambo 8	Falck St		38	13	В	5.4%	1863.13	Or Tamb	o & Falck	St
3102	NLT	1111	1950	62	2	A	10.91	69.73			
3105	ELR	96	513	19	1	A	0.02	2.15			
3108	SRT	922	1950	52	4	A	16.4	226.57			
3113 B 3114 B	ST NT	90 90	0	0	4	A A	0	24.6 5.27			
T2 31	Or Tambo 8		-	51	2	A	0.9%	328.32	Or Tamb	o & Cross	Rd
		-									
3201 3202	NR NT	44 885	528 1950	13 79	7	A C	0.25	12.32 730.09	6	50 50	
3202	NL	199	1153	13	3	A	1.26	34.66	0	50	
3204	ER	80	606	25	38	D	2.02	113.64	56	0	
3205	ELT	518	1950	51	30	C	12,96 +	609.47	56	0	
3207 3208	SR ST	25 621	252 1950	16 58	21 8	C A	0.4	19.59 204.17	6	50 50	
3209	SL	334	1255	27	3	A	2.23	51.8		50	
3210	WR	202	803	48	32	С	4.49	241.42	56	0	
3211	WT WL	599 58	1950 976	59	17	B	10.73 0.13	428.96	56	0	;
3212 3213 B	ST	90	976	6 0	2	A A	0.13	2.15 5.41			
3214 B	NT	90	0	0	32	С	0	98.85			
T2 32	0r Tambo 8	Rhodes A	ve	52	17	В	7.3%	2552.53	Or Tamb	o & Rhode	s Ave
3302	NLTR	1057	3900	29	0	A	0.06	5.65			
3305	ELTR	1037	546	3	0	Ā	0.00	0.05			
3308	SLTR	825	3900	23	0	Α	0.04				
3311 3313 B	WLTR		546				0.04	3.24			
3313 B	S1	70 90		13	1	A	0.15	1.72			
3314 B	ST NT	90 90	0	13 0 0	1 0 0	A A A					
T2 33		90 90	0	0	0	A A	0.15 0	1.72 0.35 0.48	Or Tamb	o & Godda	ar St
T2 33	NT Or Tambo 8	90 90 & Goddar St	0	0 0 24	0 0 0	A A A A	0.15 0 0 0.0%	1.72 0.35 0.48 11.49			
	NT	90 90	0	0	0	A A A	0.15 0 0	1.72 0.35 0.48	Or Tamb	o & Godda 46 46	
T2 33 3401 3402 3407	NT Or Tambo 8 NR NLT SR	90 90 & Goddar St 36 780 31	0 0 612 1950 439	0 0 24 10 68 47	0 0 14 16 21	A A A B B C	0.15 0 0.0% 0.51 13.93 0.79	1.72 0.35 0.48 11.49 20.97 528.38 24.69	6 6 6	46 46 46	
T2 33 3401 3402 3407 3408	NT Or Tambo 8 NR NLT SR ST	90 90 & Goddar St 36 780 31 632	0 0 1950 439 1950	0 0 24 10 68 47 55	0 0 0 14 16 21 12	A A A B B C B	0.15 0 0.0% 0.51 13.93 0.79 6.78	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57	6 6 6	46 46 46 46	
T2 33 3401 3402 3407 3408 3409	NT Or Tambo 8 NR NLT SR ST SL	90 90 & Goddar St 36 780 31 632 173	0 0 1950 439 1950 1750	0 0 24 10 68 47 55 17	0 0 0 14 16 21 12 5	A A A B B C B A	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21	6 6 6 6	46 46 46 46 46	
T2 33 3401 3402 3407 3408	NT Or Tambo 8 NR NLT SR ST	90 90 & Goddar St 36 780 31 632	0 0 1950 439 1950	0 0 24 10 68 47 55	0 0 0 14 16 21 12	A A A B B C B	0.15 0 0.0% 0.51 13.93 0.79 6.78	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57	6 6 6	46 46 46 46	
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 B	NT Or Tambo 8 NR NLT SR SL WR WLT ST	90 90 & Goddar Sf 780 31 632 173 114 370 90	0 0 1950 439 1950 1750 1800 1950 0 0	0 0 24 68 47 55 17 11 33 0	0 0 0 14 16 21 12 5 9 11 7	A A A B B C B A A A A	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 54.69 180.86 18.92	6 6 6 6 6 52	46 46 46 46 46 0	
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 B 3414 B	NT Or Tambo 8 NR NLT SR ST SL WR WLT ST NT	90 90 & Goddar Si 36 780 31 632 173 114 370 90 90	0 0 1950 439 1950 1750 1800 1950 0 0 0	0 0 24 10 68 47 55 17 11 33 30 0 0	0 0 0 114 16 21 12 5 9 9 111 7 44	A A A A B B C C B B C A A A B A D	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+)	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53	6 6 6 6 52 52	46 46 46 46 0 0	
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 B	NT Or Tambo 8 NR NLT SR SL WR WLT ST	90 90 & Goddar Si 36 780 31 632 173 114 370 90 90	0 0 1950 439 1950 1750 1800 1950 0 0 0	0 0 24 68 47 55 17 11 33 0	0 0 0 14 16 21 12 5 9 11 7	A A A B B C B A A A A	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53	6 6 6 6 52 52	46 46 46 46 46 0	
T2 33 3401 3402 3407 3408 3410 3411 3413 B 3414 B T2 34 3502	NT Or Tambo & NR NLT SR ST SL WR WLT ST NT Or Tambo & NLR	90 90 & Goddar Si 36 780 31 632 173 114 370 90 90 90 90 90 90 90 90 90 90 90 90 90	0 0 1950 1950 1950 1750 1950 0 1950 0 0 0 s St 1950	0 0 24 10 68 47 55 17 11 13 33 0 0 0 0 46 75	0 0 0 14 16 21 12 5 9 9 111 7 7 44 44 14	A A A B B C B A A A A B B B B B B	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7%	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53 1298.63	6 6 6 52 52 0r Tambo	46 46 46 46 0 0 0 0 8 St Gec	orges St
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 B 3414 B T2 34 3502 3505	NT Or Tambo & NR NLT SR SL WR WLT ST NT Or Tambo & NLR ET	90 90 8 6 Goddar Si 36 780 31 173 114 370 900 900 900 2 St George 1006 449	0 0 1950 1950 1950 1950 1950 1950 0 0 0 5 St 1950 1950	0 0 24 10 68 47 55 5 17 11 11 33 0 0 0 0 0 46 75 59 59	0 0 0 144 166 211 122 5 5 9 9 9 9 111 7 7 444 14 14 13 31	A A A B B C B A A A A B A B B C	0.15 0 0.0% 0.51 13.93 0.79 0.79 0.79 0.78 1.07 1.31 5.02 0 0 (+) 3.7% 17,03 + 13.36	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53 1298.63 579.54	6 6 6 52 52 52 0r Tamb 6	46 46 46 0 0 0 0 0 6 St Geo 55 0	orges St
T2 33 3401 3402 3407 3408 3409 3410 3413 3414 B T2 34 T2 34	NT Or Tambo & NR NLT SR SL WR WLT ST Or Tambo & NLR ET WT	90 90 8 Goddar Si 36 780 780 31 632 173 90 90 90 90 8 St George 1006 449 316	0 0 0 1950 1950 1950 1950 1950 0 0 s St 1950 1950	0 0 24 10 68 47 55 177 11 33 0 0 0 46 75 59 45	0 0 0 14 16 21 12 5 9 9 11 17 7 44 4 4 4 4 4 4 13 11 9 19	A A A B B C B A A A D B B C B	0.15 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17,03 + 13.36 7.87	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53 1298.63 1298.63 579.54	6 6 6 52 52 0r Tambo	46 46 46 46 0 0 0 0 8 St Gec	orges St
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 B 3414 B T2 34 3502 3505	NT Or Tambo & NR NLT SR SL WR WLT ST NT Or Tambo & NLR ET	90 90 8 6 Goddar Si 36 780 31 173 114 370 900 900 900 2 St George 1006 449	0 0 1950 1950 1950 1950 1950 1950 0 0 0 5 St 1950 1950	0 0 24 10 68 47 55 5 17 11 11 33 0 0 0 0 0 46 75 59 59	0 0 0 144 166 211 122 5 5 9 9 9 9 111 7 7 444 14 14 13 31	A A A B B C B A A A A B A B B C	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17,03 + 13.36	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46.5 180.86 18.92 133.53 1298.63 579.54	6 6 6 52 52 52 0r Tamb 6	46 46 46 0 0 0 0 0 6 St Geo 55 0	orges St
T2 33 3401 3402 3407 3408 3410 3411 3413 3414 T2 34 3502 3511 3513 B	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 & Goddar Si 36 780 31 114 370 90 90 90 8 St George 1006 449 316 90	0 0 1950 1950 1950 1950 1950 0 0 0 5 St 1950 1950 1950 1950 1950 0 0 0 0	0 0 24 10 68 47 7 55 17 13 33 0 0 0 0 46 75 59 45 0 0	0 0 0 14 16 21 12 5 9 9 111 7 7 44 4 14 13 31 31 331	A A A B B C B A B A B B B C C B A	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17,03 + 13.36 7,03 + 13.36	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 46:5 180.86 18.92 133.53 1298.63 579.54 579.54 542.16 249 9.55	6 6 6 52 52 52 0r Tamb 6 6 61 61	46 46 46 0 0 0 0 0 6 St Geo 55 0	orges St
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 3414 T2 34 3502 3505 3511 3513 B 3514 B T2 35	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 8 Goddar Si 36 780 31 6322 173 114 370 90 90 90 90 90 90 90 5 St & Frase Total Distance	0 0 0 1950 1950 1950 1950 1950 1950 1950	0 0 24 10 68 47 55 5 17 11 11 33 0 0 0 0 0 46 59 45 59 45 0 0 0	0 0 0 14 16 21 12 5 9 9 11 7 7 44 4 4 13 31 7 9 3 31 8 8 18 7 8 7 7 7 7 44 14 7 7 7 7 44 7 7 7 7 8 7 9 7 7 7 8 7 7 7 7 7 7 7 7 7	A A A A B B C C B A A B B C B B C B B B C C B B C C B B C	0.15 0.0% 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 3.7% 3.7% 4.2% 0 4.2% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100100	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 0r Tambo 6 61 61 8t Georg	46 46 46 0 0 0 0 8 St Gec 55 0 0 0	orges St raser Ln Fuel
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 3414 T2 34 3502 3505 3511 3513 B 3514 B T2 35	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 & Goddar Si 36 780 31 632 173 114 114 114 370 900 90 8 St George 1006 449 316 900 900 \$ St & Frase	0 612 1950 1950 1950 1950 1950 0 0 0 5 St 1950 1950 1950 1950 1950 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 24 47 55 17 17 33 0 0 0 0 46 75 59 45 50 0 0 0 60	0 0 0 14 16 211 12 5 9 9 111 7 7 44 4 14 13 331 19 9 3 3 18 18	A A A B B C C B A A B B B B B B B B C C B B B C C B B C C C B C C B C C C B C C C C B C	0.15 0.0% 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17,03 + 13.36 7.87 0 0 0 0 4.2%	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 0r Tamb 6 6 61 61 81 81 81 Georg	46 46 46 46 0 0 0 8 St Geo 55 0 0 0 9 9 9 9 8 5 8 5 5 5 0 0 0	orges St raser Ln Fuel
T2 33 3401 3402 3407 3408 3410 3411 3413 3414 3414 3502 3505 3511 3513 B 3514 B T2 35 Vehicle Type	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 & Goddar St 780 31 114 370 90 90 & St George 1006 449 316 90 3 St & Frase Total Distance Travelled (PCU-km/h)	0 0 1950 1950 1950 1950 0 0 5 5 5 1950 1950	0 0 24 10 68 47 7 55 17 11 33 0 0 0 0 46 75 59 45 0 0 0 60 60 8peed (km/h)	0 0 0 14 14 16 211 12 5 9 9 111 7 7 44 14 13 31 19 9 3 8 18 18 18 7 0tal Delay (PCU-hrs/h)	A A A B B B C C B A A B B B B B B B B B	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17.03 + 13.36 7.87 0 0 0 4.2% 17.03 + 13.36 7.87 0 0 17.03 + 13.36 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.04 17.04 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.06 + 17.06 + 17.06 + 1	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 0r Tamb 6 61 61 61 51 Georg Index	46 46 46 0 0 0 8 St Geo 55 0 0 0 55 0 0 0 0 55 6 0 0 0 0 0 0 0	raser Ln Fuel Consumptie (//hr)
T2 33 3401 3402 3407 3408 3409 3410 3411 3413 3414 T2 34 3502 3505 3511 3513 B 3514 B T2 35	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 8 Goddar Si 36 780 31 632 173 114 370 90 90 90 90 8 St George 1006 449 316 900 90 5 St & Frase Travelled	0 0 1 1950 1950 1950 1950 1950 0 0 0 5 St 1950 1950 1950 1950 1950 1950 0 0 0 0 0 1950 1950 0 0 0 1950 1950 0 0 0 0 0 1950 1950 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 24 10 68 47 55 5 17 11 11 33 0 0 0 0 0 46 75 59 45 0 0 0 0 0 60 Mean Journey	0 0 0 14 16 21 12 5 9 9 11 7 7 44 4 4 13 31 7 9 3 31 8 8 18 7 8 7 7 7 7 44 14 7 7 7 7 44 7 7 7 7 8 7 9 7 7 7 8 7 7 7 7 7 7 7 7 7	A A A B B C C B A A B B B B B B B B C C B B B C C B B C C C B C C B C C C B C C C C B C	0.15 0.0% 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17,03 + 13.36 7.87 0 0 0 0 4.2% V 1703 + 13.36 7.87 0 0 0 0 0 (+) 3.787 0 17,03 + 13.93 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 0r Tamb 6 6 61 61 61 5t Georg Total Per Index	46 46 46 46 0 0 0 x St Gec 55 0 0 0 0 55 55 0 0 0 0 0	raser Ln Fuel Consumptia (//hr)
T2 33 3401 3402 3407 3408 3410 3411 3413 3414 T2 34 3502 3505 3511 3513 B 3514 B T2 35 Vehicle Type Total NBOT Mixed NBOT MIXed NBOT MIXed	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 % Goddar St 36 780 31 114 370 90 90 90 % St George 1006 449 336 449 336 449 336 X & Frase Total Distance Travelled (PCL-why) 12466.27 3581.13 380.94	0 0 0 1950 1950 1950 1950 0 0 s St 1950 0 0 s St 1950 0 0 0 r Ln Total Time Spent (PCU- hr/h) 321.6 73.16 12.51	0 0 24 10 68 47 17 11 33 0 0 0 0 46 75 59 45 5 0 0 0 0 60 60 8 88.81 48.95 30.46	0 0 0 14 16 211 12 5 9 9 11 7 7 44 14 13 31 19 3 3 18 18 18 7 0 253.15 17.91 2.3	A A A B B B C C B A A B B B B B B B B B	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17.03 + 13.36 7.87 0 0 0 4.2% 17.03 + 13.36 7.87 0 0 17.03 + 13.36 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.04 17.04 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.06 + 17.06 + 17.06 + 1	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 52 0r Tamb 6 61 61 61 8 5t Georg 7 0r Jamb 7 0 1 9 470 203 2 29 4	46 46 46 0 0 0 x St Geo 55 0 0 0 0 x St Geo (55 0 0 0 0 0 0 0 9 26 3.41 4.23	raser Ln Fuel Consumptio (l/hr) 1665.
T2 33 3401 3402 3407 3408 3410 3411 3413 B 3414 B T2 34 3502 3513 B 3513 B 3514 B T2 35 Vehicle Type Total NBOT Mixed NBOTBUSSES PHASE1 NB	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 8 Goddar Si 36 780 31 16 32 173 114 370 90 90 90 90 8 St George 1006 449 316 90 90 90 5 St & Frase (PCU-km/h) 12466.27 358.1.3 380.94 1762.65	0 0 0 1950 1950 1950 1950 1950 1950 1950	0 0 24 10 68 47 55 17 11 33 0 0 0 46 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 14 16 21 12 5 9 9 111 7 44 14 14 13 31 19 33 18 18 18 18 7 total Delay (PCU-hrs/h) 253.15 17.91 2.3 15.57	A A A B B B C C B A A B B B B B B B B B	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17.03 + 13.36 7.87 0 0 0 4.2% 17.03 + 13.36 7.87 0 0 17.03 + 13.36 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.04 17.04 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.06 + 17.06 + 17.06 + 1	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 52 0r Tambo 6 6 61 61 61 8t Georg 7 8t Georg 7 8t Georg 7 8t Georg 7 8t Georg 7 8t Georg 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	46 46 46 0 0 0 8 St Geo 55 0 0 0 9 9 9 8 55 0 0 0 0 9 9 9 55 0 0 0 0 9 9 9 9 9 9	
T2 33 3401 3402 3407 3408 3410 3411 3413 3414 T2 34 3502 3505 3511 3513 B 3514 B T2 35 Vehicle Type Total NBOT Mixed NBOT Mixed NBOT Mixed	NT Or Tambo & NR NLT SR SL SL WR WLT ST NT Or Tambo & NLR ET WT ET WT	90 90 % Goddar St 36 780 31 114 370 90 90 90 % St George 1006 449 336 449 336 449 336 X & Frase Total Distance Travelled (PCL-why) 12466.27 3581.13 380.94	0 0 0 1950 1950 1950 1950 0 0 s St 1950 0 0 s St 1950 0 0 0 r Ln Total Time Spent (PCU- hr/h) 321.6 73.16 12.51	0 0 24 10 68 47 17 11 33 0 0 0 0 46 75 59 45 5 0 0 0 0 60 60 8 88.81 48.95 30.46	0 0 0 14 16 211 12 5 9 9 11 7 7 44 14 13 31 19 3 3 18 18 18 7 0 253.15 17.91 2.3	A A A B B B C C B A A B B B B B B B B B	0.15 0 0.0% 0.51 13.93 0.79 6.78 1.07 1.31 5.02 0 (+) 3.7% 17.03 + 13.36 7.87 0 0 0 4.2% 17.03 + 13.36 7.87 0 0 17.03 + 13.36 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.03 + 17.04 17.04 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.05 + 17.06 + 17.06 + 17.06 + 1	1.72 0.35 0.48 11.49 20.97 528.38 24.69 305.57 39.21 133.53 1298.63 1298.63 579.54 542.16 249 9.55 67.8	6 6 6 52 52 0r Tamb 6 6 61 61 61 8 5t Georg Index 347/ 263 299 375 3300	46 46 46 0 0 0 x St Geo 55 0 0 0 0 x St Geo (55 0 0 0 0 0 0 0 9 26 3.41 4.23	

Note: - L = Left, T = Through, R = Righturn

R-\Technical/Projects\127 MMM IPTN\17- OR Tambo Corridor\Traffic Study\TRANSYT\Forecast Evaluation\PM EVALUATION RESULTS 1B

MMM – City Wide Integrated Public Transport Plan

I.3 Traffic Impact Study – CBD Phase 1C (Brandwag)

INTEGRATED PUBLIC TRANSPORT NETWORK

QUALITY REVIEW

Project Name	:	IPTN Phase1C					
Project Team	:	GladAfrica Consulting Engineers (Pty) Ltd					
Employer	:	Mangaung Metropolitan Municipality					
Client Reference	:	C447					
GladAfrica Reference	:	CE0001					
Report Heading	:	IPTN Phase 1C – Stage 1 Traffic Impact Assessment Report					
Date of this Issue	:	2018/08/02					
Compiled by :	A.BRISLIN						
	muals & S	Sumame Signature / Date 2019/08/01					

Reviewed by	:	L.VAN GENDEREN Initials & Surname	Signature	Date
Reviewed by	:	N.REDDY Initials & Surname	Signature	Date

"I, **_ADRIAN BRISLIN Pr.Eng.**, author of this traffic impact study, hereby certify that I am a professional traffic engineer (Registration number:**980355** and that I have the required experience and training in the field of traffic and transportation engineering, as required by the Engineering Council of South Africa (ECSA), to compile this traffic impact study and I take full responsibility for the content, including all calculations, conclusions and recommendations made therein".

affendin

Received and accepted by a duly authorised representative of the client

Client representative name:

Signature:

Date: _____

Report Status

	7	Revision			
Draft	V	Number	0	1	

Contents

1.	EXE	CUTIVE SUMMARY	1
2.	INT	RODUCTION	5
3.	STU	DY OBJECTIVES	6
4.	INT	ERIM IPTN QUALITY BUS ROUTES	7
5.	ROA	D HIERARCHY	8
6.	201	8 BASE YEAR TRAFFIC EVALUATION	
	6.1	Data Collection	
	6.2	Descriptions of Key Intersections	10
	6.3	TRANSYT Modelling Assumptions	10
		Traffic Evaluation Results 2018	
		Summary of Evaluation Results	
7.	PHA	SE 1C IPTN STATION LOCATIONS AND TRAFFIC ASSESSMENT	12
	7.1	Proposed Phase 1C IPTN Bus Stops	12
8.	FOR	ECAST YEAR TRAFFIC EVALUATION	13
	8.1	Evaluation of Intersections	13
	8.2	Analysis of TRANSYT Model Operating Speeds	13
	8.3	Proposed Re-configuration of Starter Routes	14
9.	INT	ERMODEL FACILITY TRAFFIC EVALUATION	15
10.	С	ONCLUSIONS AND RECOMMENDATIONS	16
11.	R	EFERENCES	

List of Tables

Table 1: Results of TRANSYT Modelling Speeds for Mixed Traffic and Quality Bus	2
Table 2: HCM Level of Service Criterion	11
Table 3: Results of TRANSYT Modelling Speeds for Mixed Traffic and Quality Bus	13

List of Figures

Figure 1:Location of the proposed 3 Interim Quality Bus Routes for this Traffic Assessment. (Source
Google Earth)	1
Figure 2: Overall Layout of Stage 1 Starter Service 3 Routes	1
Figure 3: Proposed Starter Service Re-configuration of Routes (Source Google Earth)	3
Figure 4:The Proposed Preferred Option for the UFS Gate 5 Terminal and Turnaround Facility	4
Figure 5: Proposed Stage 1- Interim Quality bus routes for CBD (Source Google Earth)	7
Figure 6: Bloemfontein CBD section Road Hierarchy Classification	8
Figure 7: Re-configuration of Starter Service Bus Routes for Stage 2 Evaluation	14
Figure 8: Location of Intermodal Facility (Source Google Earth)	15

List of Annexures

- **Annexure A: Existing Peak Traffic volumes**
- Annexure B: 2018 LOS Diagrams and detailed TRANSYT Output Intersection Evaluation Results
- **Annexure C:** Details of Starter Service– 3 Quality Bus Routes (Stage 1)
- **Annexure D:** Details of Starter Service Stops/Stations.
- Annexure E : 2029 Forecast LOS Diagrams and TRANSYT Output Intersection Evaluation Results
- Annexure F: UFS Gate 5 Stop 35-37 Options Concept Drawings
- Annexure G: Detailed Analysis of Intermodal Facility Options.

Nomenclature

MMM	Mangaung Metropolitan Municipality
CBD	Central Business District
НСМ	Highway Capacity Manual
TRANSYT	Traffic modelling software to optimize traffic signals in corridors or networks
LoS	Level of Service
V/C	Volume to Capacity ratio
IPTN	Integrated Public Transport Network
UFS	University of the Free State
UA	Universal Access captured in a Guideline document NTR1
NMT	Non-Motorized Transport (pedestrians and bicycles)
Mixed traffic	Traffic stream consisting of all traffic that is not Bus public transport
PRASA	Passenger Rail Authority of South Africa
SADC-RTSM	South African Development Community- Road Traffic Signs Manual.

1. EXECUTIVE SUMMARY

GladAfrica Consulting Engineers (Pty) Ltd was appointed by the Mangaung Metropolitan Municipality to undertake this Phase 1C-IPTN Traffic Assessment. This report assesses the Phase 1C- Interim IPTN Quality Bus Routes as proposed in the Central Business District. This traffic report forms an integral part of the IPTN Operations Plan, which will include further CBD routes at a later stage. A section of the report also evaluates two alternative access options for the Intermodal Facility. (to be implemented later)

The Assessment objectives are:

- a) To evaluate the existing intersections along the proposed routes
- b) Determine the 10 year horizon forecast traffic with bus volumes.
- c) Evaluate the 10 year forecast horizon traffic at intersections and determine the modelled future mixed traffic and bus operating speeds accounting for the stops that the buses need to undertake.
- d) To confirm and evaluate the Interim Starter route options and stop/station positions from a traffic engineering viewpoint and UA/NMT user viewpoint.
- e) Determine the route and intersections upgrades necessary for the successful implementation of the Interim Starter IPTC Phase 1C service.

The extent of the traffic model is shown in the overall route plans for 3 Interim bus routes. The area extends from DF Malherbe Street in the west to Harvey Street in the east. The northmost extent is the Tempe military base and the southmost extent is the Hoffman Square terminal facility. The location of the bus routes are shown in **Figure 1** below.

Figure 2: Overall Layout of Stage 1 Starter Service 3 Routes

For the forecast condition (2029), the optimized and co-ordinated intersection overall Level of Service is no worse than LoS C, for Route 1 and Route 2. It was also found that a new signal is warranted at the D.F Malherbe /UFS Gate 5 intersection. The above 3 intersections have been optimized and co-ordinated which has them operating at LoS C. The Existing 2018 and 2029 forecast mixed traffic and bus speeds per route are shown in **Table 1** below.

ROUTE 1		ROUTE 2						
Mixed Tra	ffic							
Description		Distance (km)	Speed (km/h)	Time (mins)		Distance (km)	Speed (km/h)	Time (mins)
2018 AM Pea	k EB	5,1	29,44	10,39		5,4	13,76	23,55
2029 AM pea	ık EB	5,1	25,97	11,78		5,4	32,62	9,93
2018 AM Pea	k WB	5,1	32,1	9,53		5,4	29,28	11,07
2029 AM pea	ık WB	5,1	32,01	9,56		5,4	38,52	8,41
2018 PM Pea	k EB	5,1	29,24	10,47	5,4		28,01	11,57
2029 PM pea	k EB	5,1	27,41	11,16	5,4		37,4	8,66
2018 PM Pea	k WB	5,1	26,2	11,68	5,4		26,2	12,37
2029 PM pea	k WB	5,1	30,1	10,17	5,4		39,22	8,26
Quality BUS	1							
AM Peak	Bus/ hr	Distance (km)	Speed with stops (km/h)	Time (mins)	Bus/ hr	Distance (km)	Speed with stops (km/h)	Time (mins)
EB	6	5,1	11,12	27,52	4	5,4	19,38	16,72
WB	6	5,1	13,37	22,89	4	5,4	24,20	13,39
Turnaround		10,2	12,14	50,41		10,8	21,52	30,11
PM Peak								
EB	6	5,1	12,79	23,92	4	5,4	24,04	13,48
WB	6	5,1	15,26	20,05	4	5,4	25,22	12,85
Turnaround		10,2	13,92	43,98		10,8	24,62	26,32

Table 1: Results of TRANSYT Modelling Speeds for Mixed Traffic and Quality Bus

The above resultant operating speeds (including stops) for Route 1- Hoffman Square to UFS are very low because the route turns often and does not contain significant lengths of one-way streets.

This means that the three routes would need to be re-configured so that especially the University route, which carries the highest demand, would operate at a higher bus turnaround speed.

The proposed re-configured routes for Stage 2 are shown in **Figure 2** below.

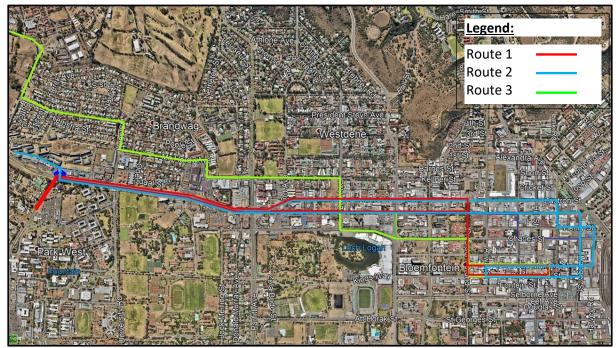


Figure 3: Proposed Starter Service Re-configuration of Routes (Source Google Earth)

These will have to be modelled in Stage 2 of the Traffic Assessment to confirm the Level of Service and bus operating speeds along the routes.

The upgrading proposed along the presently proposed routes comprises 45 traffic signals and 35 priority controlled intersections. These 80 intersections all need to be upgraded to comply with the NTR1 Universal Access standards. One new traffic signal is warranted at the D.F.Malherbe/UFS Gate 5 intersection. Although detailed in the UA report all the sidewalks along the routes will have to be upgraded by re-paving them properly where required or providing new paved sidewalks. It is proposed that the new required sidewalks are prioritized.

Furthermore the signal timings of the 46 upgraded intersections would need to be designed and coordinated as proposed by the forecast TRANSYT models.

36 new temporary bus stops will be required and the location of these have been finalized by site visits, UA reporting and traffic engineering inputs. In general the stops would involve removing 2 parking bays, placing temporary plastic bollards to prevent these from being used. This will provide an area of 12m long by 2,5 m wide on the leftmost side of the street. The bus will then stop within the nearmost traffic lane to pick up passengers. Subsequently this parking area will be replaced by a prototype temporary steel stop which is universally accessible and is 300mm high for the bus floor. When we are sure about the stop location this will be replaced by a concrete peninsula stop which may or may not also require a shelter.

Of note is stop 1 along Harvey Street between Charles Street and Charlotte Maxeke Street, which will require negotiations with PRASA to utilize the current parking area which has been fenced off. The UFS terminal turnaround point has been finalised choosing Option 1 of 3 options investigated, but also containing elements of Option 2. This option also still has to be negotiated with the University.

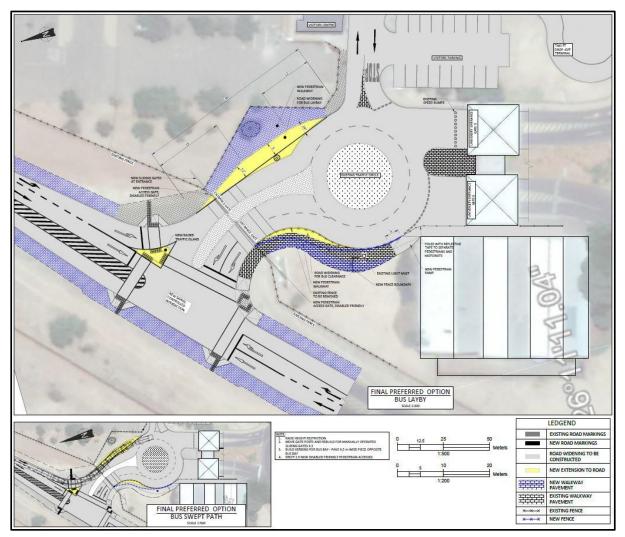


Figure 4:The Proposed Preferred Option for the UFS Gate 5 Terminal and Turnaround Facility

2. INTRODUCTION

GladAfrica Consulting Engineers (Pty) Ltd was appointed by the Mangaung Metropolitan Municipality to undertake this Phase 1C-IPTN Stage 1 Traffic Assessment. This report assesses the Phase 1C- Interim IPTN Quality Bus Routes as proposed to/from the Central Business District (CBD). Stage 1 evaluates the first proposed bus routes.

The operating speed results obtained for the Stage 1 assessment have informed the re-configuration of the three routes based on the speed results obtained. Therefore Stage 2 of the traffic Assessment report will still need to be undertaken to determine the re-configured route operating speeds.

This traffic report forms an integral part of the IPTN Operations Plan, which will include further CBD routes at a later stage. The Stage 1 report shows the 3 starter service routes assumed. The existing and forecast traffic evaluation was obtained using TRANSYT software so that the bus can be modelled in the leftmost lane and an average stop time can bhe incorporated. Each proposed station position has also been evaluated from a traffic engineering viewpoint and these results shown in **Annexure D**.

A section of the report also evaluates two alternative access options for the Intermodal Facility. (to be implemented later). Since the taxi industry is in dispute with MMM at this point in time the Intermodal facility is not used by them. It was therefore proposed that Hoffman Square be used as the central departure/arrival for the starter routes as it has shelters and docking facilities already which can be used by the IPTN.

The results of the operating speed for Route 1 which is from Hoffman Square to Gate 5 of the UFS are too low as we have a limited amount of buses for the fleet. It is therefore necessary to re-configure the routes. These would have to be evaluated and modelled in a Stage 2 assessment.

3. STUDY OBJECTIVES

The purpose of this Stage 1 Traffic Assessment report is to provide more detail on the actual traffic modelling of the proposed interim 3 Quality bus routes which form part of the Phase 1C portion of the Mangaung IPTN in the bounds of the Bloemfontein Central Business District (CBD). The assessment will confirm the proposed bus stop positions with an evaluation of the traffic engineering aspects and implications to the mixed traffic and include recommendations for the upgrading of NMT facilities along and in the vicinity of the proposed bus routes.

The Traffic Assessment report objectives consist of the following:

- 1) Model the Stage 1 Phase 1C Interim service three proposed Quality bus routes
- 2) Provide an intersection traffic evaluation of the existing route conditions to identify current route bottlenecks and how these should be upgraded
- 3) Determine and investigate the traffic engineering aspects and implications of the proposed bus stop positions along the Quality bus routes.
- 4) Model the future traffic conditions along the proposed 3 Interim service routes with the inclusion of the Quality Bus (QB) stopping at the bus stops, in order to verify future traffic operating conditions
- 5) Summarize the forecast traffic operations and achieved bus and mixed traffic speeds
- 6) Make final route upgrading recommendations, making traffic signal optimization and coordination

4. INTERIM IPTN QUALITY BUS ROUTES

The three proposed Stage 1 interim bus routes are summarized with their origin and destinations.

- d) Route 1 Hoffman Square to University of the Free State and return
- e) Route 2 Hoffman Square to Bloemgate shopping Centre and return
- f) Route 3 Hoffman Square to Tempe military base and return.

It is proposed that a fleet of 13 buses service the 3 routes with 9 dedicated to Route 1 and Route 2 and 4 dedicated to Route 3. These have been shown in detail in **Annexure C.**

In the weekday peaks a frequency of 15 minutes is proposed with a 30 minute frequency for the offpeak.

On a Saturday the frequency will be 30minutes throughout the day.

On Sunday and public holidays a 60 minute frequency is proposed for the whole day.

The operational hours proposed are as follows:

- **a.** Weekdays- 05:00 to 20:00
- **b.** Saturdays- 05:00 to 16:00
- c. Sunday/public holidays- 06:00 to 15:00

Hoffman Square was chosen as the central CBD terminal since the number of destinations possible at the Intermodal facility bus level is limited. Also it is already a terminal for the IBL and mini-bus taxi services where as no taxis are currently using the Intermodal facility because of a dispute with MMM.

Hoffman Square presently also has 18 bus shelters(9 on each side north and south) with a dedicated docking public transport lane.

A diagrammatic representation of the routes is shown in **Figure 4** below.

Figure 5: Proposed Stage 1- Interim Quality bus routes for CBD (Source Google Earth)

5. ROAD HIERARCHY

All the CBD Streets are classified as Class 4a as they are commercial activity streets. The Nelson Mandela/Zastron one-way pair has a slightly higher priority (Class 2) as this forms part of National Route 8 through the CBD. (Reference was also made to TRH 26 for the road classification)

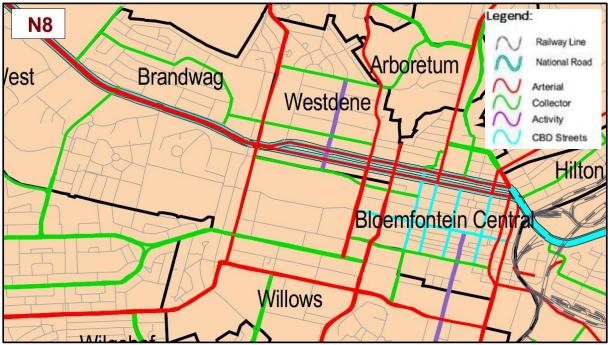


Figure 6: Bloemfontein CBD section Road Hierarchy Classification

In terms of The Mangaung Road Classification System the CBD streets can be classified as follows:

- a) Arterial Road
 - Nelson Mandela and Zastron Streets which form part of the N8
 - Parfitt Street
 - President Boshoff/Markgraaff Street
 - First Avenue
 - Hanger Street
 - Harvey Road
 - Fort Road
 - Victoria Road/President Ave.
- b) Collector Road
 - Park Road
 - Charles/Henry Street
 - D.F Malherbe Street
 - Furstenburg Road
 - Melville Drive
 - Kellner Street

- c) Activity Street
 - Oliver Tambo/Kerk Street
 - Second Street
- d) CBD Street
 - St. Andrews Street
 - President Brand Street
 - Oos-Burger Street
 - Wes-Burger Street
 - Aliwal Street.

6. 2018 BASE YEAR TRAFFIC EVALUATION

6.1 Data Collection

Most of the intersection turning movements during both the AM and PM peak hours were undertaken in September and October of 2018. Where necessary these have been supplemented with 2018 counts from other sources. A summary of the turning traffic counts are shown diagrammatically in **Annexure A** for Route 1 and Route 2 for the AM peak and PM peak respectively.

6.2 Descriptions of Key Intersections

The lane configurations of the intersections were obtained using Google Earth and the current signal timing plans were obtained from the Mangaung traffic engineers.

6.3 TRANSYT Modelling Assumptions

- a) The future mixed traffic growth on the CBD corridors will be 1,8%p.a. growth rate for 11 years
- b) The CBD operating speed limit of the trunk routes is 50 km/h. The actual operating speed is between 25 to 35 km/h.
- c) The TRANSYT model was broken up into the separate proposed Bus routes. The current signal timings were used for the existing analysis. Only the key intersections have been modelled.
- d) Bus dwell times were calculated per route and stop using 85% of the total demand of 850 passengers per hour sub-divided per route as follows:
 - Route 1 -6 buses per hour
 - Route 2- 4 buses per hour
 - Route 3 -3 buses per hour

Using 2 seconds per passenger boarding/alighting through the one front access door. To this wa then added 5 seconds for deceleration and 5 seconds for acceleration to obtain a total dwell time. This was calculated to be a maximum of 16 seconds, apart from Hoffman Square where 30 seconds was allowed.

- e) The off-peak direction carries 15% of the total peak hour demand.
- f) The PM peak was simply modelled as the reverse of the AM peak hour. Interesting is that the peak passenger direction in the AM peak is outbound of the CBD.

6.4 Traffic Evaluation Results 2018

The overall intersection results along the routes of the traffic evaluation are shown in diagrams in **Annexure B**. The TRANSYT results for the 2018 existing traffic demand, as determined and balanced are summarised in **Annexure B**.

Table 2: HCM Level of Service Criterion

Level of Service	Control delay per vehicle in seconds (d)				
	Signals	Roundabout	Sign Control		
А	d ≤ 10	d ≤ 10	d ≤ 10		
В	10 < d ≤ 20	10 < d ≤ 20	10 < d ≤ 15		
С	20 < d ≤ 35	20 < d ≤ 35	15 < d ≤ 25		
D	35 < d ≤ 55	35 < d ≤ 50	25 < d ≤ 35		
E	55 < d ≤ 80	55 < d ≤ 70	35 < d ≤ 50		
F	80 < d	70 < d	50 < d		

The intersection evaluation uses the delay shown in **Table 2** above to determine the Level of Service of a particular approach or turning movement.

6.5 Summary of Evaluation Results

In general, the existing (2018) overall intersection Level of Service is better than or equal to LoS C, which is highly satisfactory. There are 3 exceptions to this which operate at LoS F, these being:

- a) D.F Malherbe St. and Nelson Mandela Drive
- b) Parfitt Ave and Nelson Mandela Drive
- c) Markgraaff St. and Nelson Mandela.Drive

These problemeatic movements which are operating at LoS F were also observed on site to do so.

7. PHASE 1C IPTN STATION LOCATIONS AND TRAFFIC ASSESSMENT

7.1 Proposed Phase 1C IPTN Bus Stops

A detailed layout with properties and upgrading requirements has been undertaken for each of the 36 Starter Service stations. Traffic input regarding the location relative to streets in the vicinity together with nearby traffic signal and NMT requirements has been provided.

This has been captured in detail in Annexure D

8. FORECAST YEAR TRAFFIC EVALUATION

8.1 Evaluation of Intersections

For the forecast conditions (2029), the optimized and co-ordinated intersection overall Level of Service is no worse than **LoS C**, for Route 1 and Route 2. It was also found that a new signal is warranted at the D.F Malherbe /UFS Gate 5 intersection. The problematic 3 intersections have been optimized and co-ordinated which has them operating at **LoS C**.

A summary of the overall intersection Levels of Service along Route ! and Route 2 for the forecast scenario is shown in **Annexure C**.

8.2 Analysis of TRANSYT Model Operating Speeds

The Existing 2019 and 2029 forecast mixed traffic and bus speeds per route are shown in **Table 3** below.

Table 3: Results of TRANSYT Modelling Speeds for Mixed Traffic and Quality Bus

ROUTE 1	ROUTE 1 ROUTE 2							
Mixed Traffic								
Description		Distance (km)	Speed (km/h)	Time (mins)		Distance (km)	Speed (km/h)	Time (mins)
2019 AM Pea	k EB	5,1	29,44	10,39		5,4	13,76	23,55
2029 AM pea	ak EB	5,1	25,97	11,78		5,4	32,62	9,93
2019 AM Pea	k WB	5,1	32,1	9,53		5,4	29,28	11,07
2029 AM pea	ak WB	5,1	32,01	9,56		5,4	38,52	8,41
2019 PM Pea	k EB	5,1	29,24	10,47		5,4	28,01	11,57
2029 PM pea	k EB	5,1	27,41	11,16		5,4	37,4	8,66
2019 PM Pea	k WB	5,1	26,2	11,68	5,4 26,2 12		12,37	
2029 PM pea	k WB	5,1	30,1	10,17	5,4 39,22 8,		8,26	
Quality BUS								
AM Peak	Bus/ hr	Distance (km)	Speed with stops (km/h)	Time (mins)	Bus/ hr	Distance (km)	Speed with stops (km/h)	Time (mins)
EB	6	5,1	11,12	27,52	4	5,4	19,38	16,72
WB	6	5,1	13,37	22,89	4	5,4	24,20	13,39
Turnaround		10,2	12,14	50,41		10,8	21,52	30,11
PM Peak								
EB	6	5,1	12,79	23,92	4	5,4	24,04	13,48
WB	6	5,1	15,26	20,05	4	5,4	25,22	12,85
Turnaround		10,2	13,92	43,98		10,8	24,62	26,32

The above resultant speeds for Route 1- Hoffman Square to UFS are very low because the route turns often and does not contain significant lengths of one-way streets.

This means that the three routes would need to be re-configured so that especially the University route, which carries the highest demand, would operate at a higher bus turnaround speed.

8.3 Proposed Re-configuration of Starter Routes

As a result of the operating speed determination shown above it is necessary to re-configure the 3 Starter Routes and this will be analysed in Stage 2 of the Traffic Assessment.

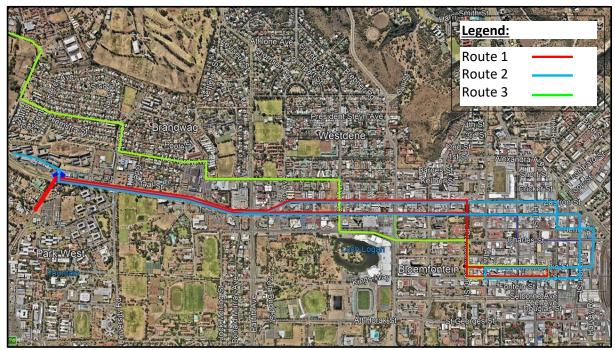


Figure 7: Re-configuration of Starter Service Bus Routes for Stage 2 Evaluation

9. INTERMODEL FACILITY TRAFFIC EVALUATION

The Intermodal Facility, which has already been constructed but is not presently in use because of a dispute between the Taxi Associations and the MMM. The location is shown in **Figure 6**.

Figure 8: Location of Intermodal Facility (Source Google Earth)

The investigation has been captured in a slide show which is shown in Annexure G.

This investigation explores two options in terms of taxi traffic flow within the facility since the capacity impact at the intersection of Hanger and Peet Avenue and Harvey and Peet Avenue is so critical. The options are compared and a recommendation made together with what traffic enforcement measures need to be implemented for the successful utilization of the facility.

Hanger Street and Harvey Road are two of the most important one-way arterials running nort-south in the eastern sector of the Bloemfontein CBD.

10.CONCLUSIONS AND RECOMMENDATIONS

- 1) The IPTN Phase 1C Starter Service will consist of 3 routes serving the following destinations
 - a) Route 1 Hoffman Square to University of the Free State and return
 - b) Route 2 Hoffman Square to Bloemgate shopping Centre and return
 - c) Route 3 Hoffman Square to Tempe military base and return.
- 2) Turning count data was collected in the latter part of 2018 at each of the key intersections along the proposed routes.
- 3) The 2018 existing traffic modelling indicates a highly satisfactory Level of Service not exceeding LoS C with the exception of the following intersections which operate at Los F:
 - a) D.F Malherbe St. and Nelson Mandela Drive
 - b) Parfitt Ave and Nelson Mandela Drive
 - c) Markgraaff St. and Nelson Mandela.Drive
- Each of the proposed Starter Service bus stops have been evaluated from a traffic engineering viewpoint to provide recommendations for their implementation. This is detailed in Annexure D for each bus stop.
- 5) The forecast traffic evaluation was undertaken for 2029 assuming a background mixed traffic growth of 1,8% p.a. for 11 years.
- 6) The forecast TRANSYT operating speeds determined for the bus is acceptable for Route 2, but is very slow for Route 1-Hoffman Square to UFS gate 5.
- 7) As a result of the above the 3 interim routes require re-configuration since the highest demand will be for Route 1. This is shown in section 8.3 **Figure 6.**
- The recommendation from the Intermodal Facility investigation is that the clockwise taxi circulation in and around the facility is the best option. The Investigation is detailed in Annexure G.
- 9) It is therefore recommended that Stage 2 of the Traffic Assessment be undertaken for the reconfigured starter routes.

11.REFERENCES

- 1) TRANSYT 15 Manual
- 2) Highway Capacity Manual 2010- Federal Hihway Authority of USA
- 3) Volume 3- SARTSM
- 4) TRH 26- Road Access Classification for Urban and Rural Roads

I.4 Waaihoeg Bridge Study

INTEGRATED PUBLIC TRANSPORT NETWORK

PROJECT: MANGAUNG, WAAIHOEK PRECINCT, PHASE1.1 – CONSTRUCTION OF ROAD OVER RAIL BRIDGE AND ASSOCIATED ACCESS ROADS: INVESTIGATION OF ALTERNATIVE ROUTES

Revised:

2016/10/13

Quality Management

Issue/revision	Issue 1	Revision 1	Revision 2	Revision 3
Remarks				
Date	06 October 2016	13 October 2016		
Prepared by	PJ Pretorius	PJ Pretorius		
Signature	19Prt	Pffet		
Checked by	P Pretorius	P Pretorius		
Signature	19Pet	Black		
Authorised by	M E Goosen	M E Goosen		
Signature	Freesen	(Broosen		
Project number	19645	19645		
Report number	Alternative	Alternative		
File reference	/11	/11		

PROJECT: MANGAUNG, WAAIHOEK PRECINCT, PHASE1.1 – CONSTRUCTION OF ROAD OVER RAIL BRIDGE AND ASSOCIATED ACCESS ROADS: INVESTIGATION of ALTERNATIVE ROUTES

2016/10/06

Client

Mangaung Metro Municipality PO Box 3704 Bloemfontein 9300

Consultant

Phethogo Consulting 122 Nelson Mandela Drive Westdene Bloemfontein 9301 South Africa

Tel: +27 51 447 1586

Table of Contents

Execut	ive Summary	. 7
1 1.1 1.2 1.3 1.4 1.5	Introduction Project Introduction and Background Extent of the Project Phasing of the project Appointment and Terms of Reference Approved budget.	. 8 . 8 . 9 . 9
2	Aim of Document	10
3 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5	Design Requirements Preliminary Design Considerations Arterial road Design speed Stopping sight distance (SSD) Horizontal curve radius Vertical curvature	11 11 11 12 12
4 4.2 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.1	Alignment Option 1 Alignment characteristics. Design characteristics. Design speed. Stopping sight distance (SSD). Horizontal curve radius. Vertical curvature. Land Acquisition . Costs for option 1 Buy out of properties 1478, 1479 & 1480. Relocate of business entities on erven 1478, 1479 & 1480.	16 20 20 20 20 21 22 22
5 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 5.4 5.4.1 5.4.2	Alignment Option 2 Alignment characteristics. Design characteristics. Design speed. Stopping sight distance (SSD). Horizontal curve radius. Vertical curvature. Land Acquisition Costs for option 2 Buy out of properties 21512, 89/1964, 84/1964, and 83/1964. Relocate of business entity on erven 21512.	25 27 27 27 27 27 27 29 29
6 6.1 6.2 6.2.1	Alignment Option 3 Alignment characteristics Design characteristics Design speed	32 35

6.2.2	Stopping sight distance (SSD)	
6.2.3	Horizontal curve radius	
6.2.4	Vertical curvature	
6.3	Land Acquisition	
6.4	Costs for option 3	
6.4.1	Atherstone Street	41
7.	Summary	

List of Figures

Figure 3-1 – Stopping site distance (Table 3.4 UTG1)	.13
Figure 4-1: Layout option1 - Alignment	
Figure 4-2: View from old railway line of Transnet towards MacKenzie Street	.16
Figure 4-3: Approaching corner of MacKenzie Street and Maroela Street	
Figure 4-4: Intersection of Mackenzie Street and Maroela Street	.17
Figure 4-5: Intersection of Mackenzie Street and Coro Street	.18
Figure 4-6: Intersection of Mackenzie Street and Barrett Kraal Street	.18
Figure 4-7: Intersection of MacKenzie Street and Pine Street	.19
Figure 4-8: Approaching intersection of Mackenzie Street and McGregor Street	
Figure 4-9: Intersection of MacKenzie Street and McGregor Street	.20
Figure 4-10: Land acquisition option 1	
Figure 4-11 – New township development options	
Figure 5-1: Option 2 proposed alignment.	
Figure 5-2: Corner Hermanus Street and Armstrong Street	
Figure 5-3: Intersection Hermanus Street and Nathan Street crossing over old side of Transnet	.26
Figure 5-4: View from old railway line of Transnet towards Mackenzie Street	.26
Figure 5-5: Land acquisition option 2	
Figure 5-6: New township development options	
Figure 6-1: Option 3 proposed alignment	
Figure 6-2: View from the intersection of Maroela and Atherstone towards McGregor	
Figure 6-3: View from the intersection of Barret Kraal Street and Atherstone Street towards	
Figure 6-4: View in Atherstone of existing entrances	
Figure 6-5: Intersection of Atherstone Street with McGregor Street.	
Figure 6-6: Intersection of Atherstone Street and McGregor Street looking towards	.34
Figure 6-7: Intersection of Atherstone Street and McGregor Street looking towards	
Figure 6-8: Stopping sight distance of Mc Gregor street before the proposed intersection	.36
Figure 6-9: Stopping sight distance of Mc Gregor street and the proposed intersection with raised vertical	
alignment	
Figure 6-10: View of Engen garage on the corner of Atherstone Street and McGregor Street	
Figure 6-11: Property 3292 on the corner of McGregor and Atherstone street	
Figure 6-12: Cross sections	
Figure 6-13: Land acquisition option 3.	
Figure 6-14: View in Atherstone Street being occupied by AFROX, owner of property 1/1459	
Figure 6-15: Intersection of Atherstone Street and McGregor Street looking towards Municipal	.40

Executive Summary

Improvement of access into the CBD from the eastern side of the Metro has been identified as one of the major catalysts in the redevelopment of the Bloemfontein Central Business District as a major attraction for development, and providing a people-friendly city.

Such a link is the construction of a new bridge across the railway lines effectively extending St Georges Street to meet up with MacKenzie Street in the industrial area.

The design team was requested to investigate three alternative options to which St Georges Street would connect with a road over rail bridge to either Mackenzie Street or via Atherstone street to Mc Gregor Street.

All three options are meeting all the design criteria.

Option 1 has three properties that must be acquired or relocated and will take the longest to go out on construction. There are numerous accesses to businesses that are operational that cannot be closed during the construction period.

Option 2 has one business stand and three additional private residential properties that must be acquired that influence overall cost of the option and an increased time frame for the construction to commence. The relocation of the existing business that must be acquired to new erven could also be considered. There are numerous accesses to businesses that are operational that cannot be closed during the construction period.

Option 3 has no new properties that must be acquired. There is some realignment required of the access into the petrol filling station on the corner of Atherstone and McGregor Streets. Alterations to the layout of the Municipal Waste Management Centre will be required if this option is accepted. There are only a few accesses along Atherstone Street which will cause less disruption to businesses during construction.

Option	Description	Cost (Excl. VAT)
Option 1	Buy out of properties 1478, 1479 & 1480	R 322,237,083.00
Option 1	Relocate of properties 1478, 1479 & 1480	R 309,667,083.00
Option 2	Buy out of properties 21512, 89/1964, 84/1964, and 83/1964	R 309,637,083.36
Option2	Relocate of properties 21512 and buy out of properties 1478, 1479 & 1480	R 308,167,083.36
Option 3	Atherstone street	R 298,152,183.36

A summary of the cost for the various options is given in the table below:

It is recommended that Option 3 be accepted by the authorities for inclusion as the preferred route and instruction be given to the design team to carry out a full design for inclusion in the tender document.

1 Introduction

1.1 Project Introduction and Background

The Mangaung CBD Urban hub initiative and the proposed redevelopment of the Waaihoek Precinct is focused on the development of a Mangaung Central Business District while connecting it to the greater context of its surroundings. The area, although, close to the CBD has constrained access as a result of numerous impediments, of which the following are the main obstructions:

- The main north south railway line linking Gauteng with Cape Town runs through the area with only limited road linkages crossing the railway line.
- Road-over-rail or rail-over-road bridges are of limited width.
- Underdeveloped buffer strips and significant topographic changes in level hamper connectivity.
- The road network is historically not ideal with limited provision for main roads, substandard spacing of intersections and angled intersections.

Pedestrian facilities in the area are in general lacking. Aspects hampering pedestrian movement in the area are as follows:

- Mentioned aspects hampering general connectivity also hamper pedestrian movement.
- Sidewalk widths are in general limited
- Sidewalks are mostly not pedestrian friendly with paving not conducive for walking.
- Informal trading on sidewalks limits pedestrian space.
- Security concerns discourage walking.

The construction of a new bridge across the railway lines effectively extending St Georges Street to meet up with McKenzie Street in the industrial area has been identified as a link between the CBD and the eastern parts of the Metro. This road will be upgraded and extended up to the M10 and possibilities exist to extend this road to the airport and N8 corridor development. This new link into the CBD will also link the N8 directly into the CBD alleviating some of the congestion on the N8 entering and exiting the CBD via Nelson Mandela and Zastron streets.

1.2 Extent of the Project

The project starts at the intersection of McGregor Street and McKenzie Street in the east. The upgrading of McKenzie Street from McGregor Street to Maroela Street. Construction of a new dual carriageway from Maroela Street to Nathan Street and along Hermanus Street until Armstrong Street. The construction of a Road over Rail Bridge from the intersection of Hermanus Street and Armstrong Street over the railway line

to the intersection of St George Street and Power Street. The upgrading of St Georges Street to a dual carriageway from the intersection of St George Street and Power street to the intersection of St George Street and Hanger Street in the west.

1.3 Phasing of the project

Phase 1.1 has been divided into three phases, namely.

- Phase 1.1.A: being the demolition of acquired properties and moving of services to construct the bridge.
- Phase 1.1.B: is for the construction of the bridge.
- Phase 1.1.C: access roads linking bridge with N8 and MacKenzie Street.

1.4 Appointment and Terms of Reference

Phethogo Consulting has been appointed by Mangaung Metro Municipality to provide professional engineering services for the implementation of the neighbourhood development programme - Contract number: T1315.

Funds have been made available by Treasury as detailed in the appointment letter with reference MNG_UNS_Bridge: McKenzie & St Georges Street_PPIP_2015-04-15 received on 5 May 2015 for **Phase 1.1 – Construction of new bridge across railway lines** which includes an access bridge over railway line to provide a link between the City and eastern parts of Bloemfontein and to connect it to the broader city network, the N8, the South Eastern industrial areas and areas like Batho, Heidedal and Grasslands.

1.5 Approved budget.

The approved budget is summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36

2 Aim of Document

Due to the costs associated with the acquiring of business properties for **Phase 1.1.C Options 1** Phethogo was requested to investigate alternative routes for linking the bridge over the railway line from St Georges Street to McKenzie Street.

Three options were identified:

- a) Option 1 This is the option going along Mackenzie street acquiring properties 1478, 1479 & 1480.
- b) Option 2 This option also runs along Mackenzie street acquiring property 21512 and additional properties in Buitesig.
- c) Option 3 This option runs along Atherstone Street and no business properties needs to be acquired other that the private properties in Buitesig identified for the bridge construction. Alterations to the Municipal Waste Management Centre.

The following aspects will be discussed during the investigation:

- § Design considerations
- § Properties to be acquired for construction of the access roads.
- § Cost implications on the alternative options.

3 Design

3.1 Requirements

The following requirements were given by Mangaung Metro Municipality:

- § Arterial route.
- § Design speed 60km/h.
- § 2 Lanes, 3.4m wide in each direction.
- § 2.5m wide paved sidewalks.

3.2 Preliminary Design Considerations

3.2.1 Arterial road

The prime function of an arterial road is the movement of traffic. More specifically the arterial road should cater for longer distance movements in the urban system.

To perform its ideal function satisfactorily an arterial road required the following provisions:

- § No access to the road from adjacent properties
- § Intersections spacing of 350m or more
- § Intersection spacing to aid traffic signal coordination
- § Design speed of 70 to 90km/h
- § Adequate lane width to accommodate all types of vehicles including trucks and buses.

Taken from Geometric design of urban arterial roads, UTG1, Pretoria, South Africa 1986.

3.2.2 Design speed

The concept of design speed developed by the American Association of State Highway and Transportation Officials (AASHTO) is used by many designers to achieve a balanced design for a given roadway or roadway network. This is particularly true for rural roads or for roads through lightly developed areas.

AASHTO defines speed as the maximum safe speed that can be maintained over a specified section of highway where conditions are so favourable that the design features of the highway govern.

The design speed Table 3-1 is taken from Table 2.2 of UTG1 with condition 3 being used for the design due to the existing accesses along the route.

Table 3-1 - Design speeds for arterials (Table 2.2 of UTG1)

80-100
70-90
60-70
50-60*
50-60*

3.2.3 Stopping sight distance (SSD)

Stopping distance involves the capability of the driver to bring his vehicle safely to a standstill, and is thus based on speed, driver reaction time and skid resistance. The total distance travelled in bringing the vehicle to a stop comprises two components:

- § the distance covered during the driver's reaction period
- § the distance required to decelerate to 0 km/h

The stopping distance is expressed as

 $s = 0,7v + v^2/254f$

where s = total distance travelled (m)

v = speed (km/h)

f = brake-force coefficient

Stopping sight distances for a 60km/h design speed on a level terrain is 80m (Table 3.4, UTG1).

Stopping sight distance is measured from an eye height of 1.05 m to an object height of 0,15 m. This object height is used because an obstacle of a lower height would not normally present a significant hazard. Object height is taken into account because measuring the site distance to the road surface would substantially increase the length of the vertical curve and hence the earthworks required.

The gradient has a marked effect on the stopping sight distance requirements. Gradient (G) modifies the stopping sight distance formula to

 $S = 0.7v + v^2/254(f \pm G)$

where G is the percent of grade divided by 100.

American Association of State Highway and Transport Officials (AASHTO), assume v equal to the design speed for downgrade conditions and v equal to a running speed which is less than design speed for upgrade conditions. Similarly, TRH 17, Geometric Design of Rural Roads presents values of stopping sight distance on grades with built-in assumptions concerning operating speed being less than design speed when road surfaces are wet.

Figure 3-1 is a direct graphical representation of the formula to show stopping sight distance on grades between -10 % and +10 % for running speeds (v) between 40 km/h and 130 km/h taken from UTG1 Figure 3.4).

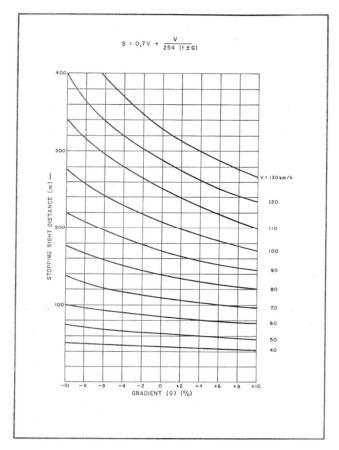


Figure 3-1 – Stopping site distance (Table 3.4 UTG1)

3.2.4 Horizontal curve radius

When taking a design speed of 60km/h and a superelevation of +0.04 the minimum radius for a horizontal curve is 150m.

Design speed	Side friction	Minimum radius for maximum superelevation rates (e)					ates (e)
km/h factor (f)	-0,02	0	+0,02	+0,04	+0,06	+0,08	
50	0,16	140	125	110	100	90	
60	0,15	220	190	170	150	135	125
70	0,15	300	260	230	205	185	170
80	0,14	425	365	315	280	255	230

Table 3-2- Minimum radius for horizontal curves (m) (TABLE 9.1 UTG1)

The recommended design practise is to use, where possible, large radius curves without superelevation. Where large radius curves are not possible, superelevation can be introduced to offset the side friction forces of small radius curves.

The margin of safety in Table 3-2 is quite high as the friction factors used relate to driver comfort rather than to limiting factors between tyres and roadway. Friction factors based on driver comfort were measured in the 1930s and 1940s. Since then there have been many innovations in vehicle suspension, steering mechanisms and tyres, all of which make driving and particularly cornering more comfortable. Due to these

a radius of up to 30% less could be selected in some situations and will still provide reasonable design. The minimum radii of 150m then can come down to 105m at 4% superelevation.

3.2.5 Vertical curvature

The rate of vertical curvature, called K, is the distance required to effect a 1 percent change of grade. Vertical curves are specified in terms of this factor, K.

$$K = \frac{L}{A}$$

where

L = length of vertical curve in metres

and A = the algebraic difference between grades in percentage.

The minimum rate of curvature is determined by sight distance, of which the stopping sight distance are most frequently used, as well as by considerations of comfort and of comfort of operation and aesthetics.

Values of K, based on stopping sight distance in the case of crest curves, and headlight illumination distance in the case of sag curves, are given in Table 3-3.

	Ctonning		k	(
Design speed	Stopping sight distance (m)*	Crest	Sa	ıg
	distance (m)		Headlight	Comfort
40	45	6	6	4
50	65	11	11	6
60	80	16	17	8
70	95	23	24	12
80	115	33	31	16
90	135	46	49	20

Table 3-3 - Minimum values of K for vertical curves (Table 9.3 UG1)

4 Alignment Option 1

4.1 Alignment characteristics

The alignment connects St Georges road with Mackenzie Street with the proposed road over rail bridge. An intersection will connect the proposed Transnet road with the St Georges / Mackenzie extension. Figure 4.1 shows the proposed alignment for option 1.

Figure 4-1: Layout option1 - Alignment

Figure 4-2: View from old railway line of Transnet towards MacKenzie Street

Figure 4-3: Approaching corner of MacKenzie Street and Maroela Street

Figure 4-4: Intersection of Mackenzie Street and Maroela Street

Figure 4-5: Intersection of Mackenzie Street and Coro Street

Figure 4-6: Intersection of Mackenzie Street and Barrett Kraal Street

Figure 4-7: Intersection of MacKenzie Street and Pine Street

Figure 4-8: Approaching intersection of Mackenzie Street and McGregor Street

Figure 4-9: Intersection of MacKenzie Street and McGregor Street

4.2 Design characteristics

4.2.1 Design speed

The design speed of 60km/h as chosen was used during this design. There was no reason to adjust the design speed for the proposed alignment.

4.2.2 Stopping sight distance (SSD)

A detailed design was done for this option. The stopping sight distance was checked according to the proposed vertical alignment design. The proposed vertical alignment did comply with the stopping sight distance of 80m which is given in Table 3.4, UTG1.

4.2.3 Horizontal curve radius

The alignment consists of three horizontal curves. The radii of these curves are between 200m and 345.5m. The minimum recommended radius is 150m at a superelevation of 4%. The radii used for the alignment are thus more than adequate.

4.2.4 Vertical curvature

The vertical alignment consists out of three sag curves and four crest curves. The sag curves K-values are between 8 and 120.255. The minimum K-value needs to be 8 for a sag curve. Thus the values according to

the design are according to the proposed design criteria. The crest curve K-values are ranging from 16 to 1500. The proposed value is 16. The design thus also complies with the minimum proposed K-value.

4.3 Land Acquisition

The proposed new bridge and access roads is situated over various properties that must be acquired by the Municipality. Figure 4-10 below provides the locality of the proposed alignment of access roads and bridge position. It also provides the locality of the properties that must be acquired.

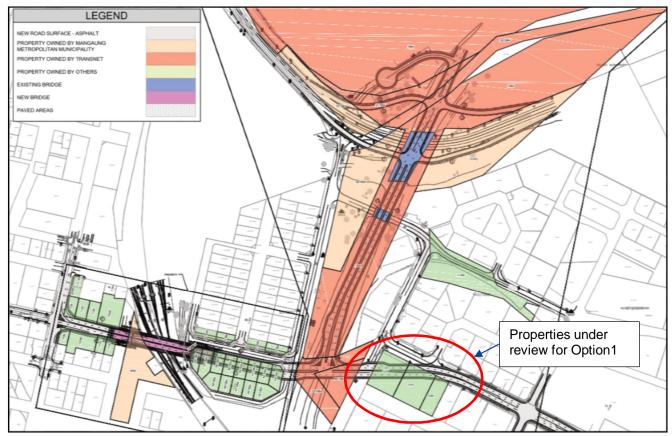


Figure 4-10: Land acquisition option 1

The table 4-1 show the effected properties and the owner of each property.

Properties effected by the project				
MMM	TRANSNET	OTHERS		
5052	1964	1124		
21470	25/1964	1125		
12/1964	31/1964	1126		
20/1964	32/1964	1166		
35/1964	RE/1964	1175		
		1176		
		1478		
		1479		
		1480		
		13390		
		13465		
		21486		
		22096		
		1/1119		
		36/1964		
		37/1964		
		38/1964		
		39/1964		
		40/1964		
		41/1964		
		42/1964		
		43/1964		
		45/1964		
		46/1964		
		47/1964		
		48/1964		
		49/1964		

Table 4-1: Effected Properties

This report focuses on acquiring the following properties: 1478, 1479, 1480.

4.4 Costs for option 1

4.4.1 Buy out of properties 1478, 1479 & 1480

The approved costs are summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36

There are three business properties that must be acquired for the alignment as indicated in Figure 4-10. Property 1478 is the Bosch franchise and 1479 and 1480 are one owner running a scrap yard.

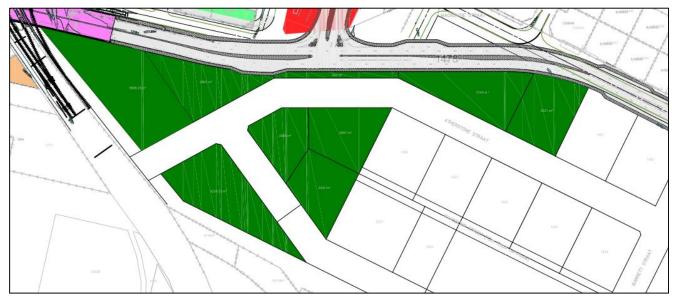
Mackenzie Properties		
1478 – Bosch		R30,000,000.00
1479 – Scrap Yard		R 9,100,000.00
1480 – Scrap Yard		Included
	Sub Total	R39,100,000.00

Note: Costs indicated in table above is estimated figures based on available information available from MMM and must be confirmed during the negotiation phase.

Additional cost to facilitate the acquisition of the property and completing all the legal requirements:

Additional Costs		
Lawyer (Property Administration)		R 2,080,000.00
	Sub Total	R 2,080,000.00

The TOTAL cost for **Option 1 - Buy out of properties 1478, 1479 & 1480** is **R 322,237,083.00** (Excl. VAT).


4.4.2 Relocate of business entities on erven 1478, 1479 & 1480 The approved costs are summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36
-----------------------------	-----------	------------------

The other scenario that was looked at was the relocation of the business entities to suitable properties in the area. Figure 4-11 indicates new township development that could be carried out on the acquired property and the other available open areas. properties that could be developed once the road construction is completed.

Figure 4-11 – New township development options

The cost of the relocation is as follows:

Mackenzie Properties		
1478 – Bosch – Consolidate Erf		R10,000,000.00
1479 – Scrap Yard – Relocate to new site		R 5,500,000.00
1480 – Scrap Yard		Included
	Sub Total	R15,500,000.00

Note: Costs indicated in table above is estimated figures based on available information available from MMM and must be confirmed during the negotiation phase.

Additional cost for township development:

Additional Costs		
Lawyer (Property Administration)		R 2,080,000.00
Town Planning		R 950,000.00
Services – Road		R 6,500,000.00
Services – Water Sewer		R 3,500,000.00
Survey		R 45,000.00
Geotechnical		R 35,000.00
	Sub Total	R 13,110,000.00

The TOTAL cost for Option 1 - Relocate of properties 1478, 1479 & 1480 is R 309,667,083.00 (Excl. VAT).

The selling of the remaining erven is not taken into consideration.

5 Alignment Option 2

5.1 Alignment characteristics

This alignment option is also linking St Georges street with Mackenzie Street with a proposed road over rail bridge. The proposed Transnet road also intersects with the proposed alignment. The Transnet Road connects the National Road, N8 with the proposed road upgrade.

Figure 5-1: Option 2 proposed alignment.

Figure 5-2: Corner Hermanus Street and Armstrong Street

Figure 5-3: Intersection Hermanus Street and Nathan Street crossing over old side of Transnet

Figure 5-4: View from old railway line of Transnet towards Mackenzie Street

5.2 Design characteristics

5.2.1 Design speed

The design speed of 60km/h as chosen was used during this design. There was no reason to adjust the design speed for the proposed alignment.

5.2.2 Stopping sight distance (SSD)

Only a preliminary design was done on this option. The proposed alignment does not seem to have an issue with regard to the stopping sight distance.

5.2.3 Horizontal curve radius

The horizontal alignment of the Transnet Road linking the N8 with MacKenzie consisted of one horizontal curve, this had to be increased to three horizontal curves. The minimum recommended radius is 150m at a superelevation of 4%. The minimum curve radius on the Transnet alignment had to be altered by the 30% allowed for by the UTG from 150m to 105m. The radii used range from 105m to 150m. It is however not recommended to reduce the radii by 30% as this is an arterial route.

The St Georges Street/ MacKenzie Street still have three horizontal curves on the alignment which ranges from 150m to 337.882m.

5.2.4 Vertical curvature

The preliminary Vertical alignment for the St Georges Street / MacKenzie Street section did not change significantly from option 1 with all the K-values within allowable ranges with regards to the proposed design standards.

The Transnet Road's vertical alignment preliminary design also shows no problem with regards to obtaining suitable K-values for the crest and sag curves.

5.3 Land Acquisition

The proposed new bridge and access roads is situated over various properties that must be acquired by the Municipality. Figure 5-5 provides the position of the proposed alignment of the access roads and bridge position. It also provides the locality of the properties that must be acquired.

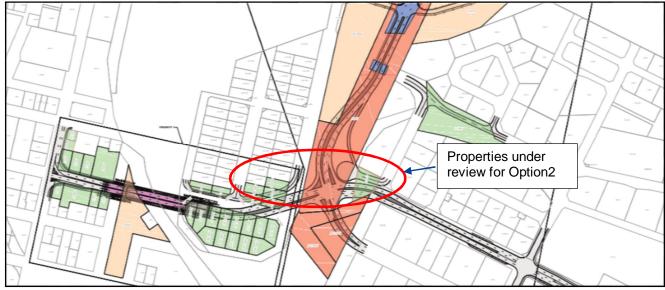


Figure 5-5: Land acquisition option 2

Table 5-1 shows the effected properties and the owners of each property.

Table 5-1 - Effected Properties

Properties effected by the project			
МММ	TRANSNET	OTHERS	
5052	1964	1124	
20/1964	25/1964	1125	
44/1964	31/1964	1126	
62/1964	32/1964	1166	
64/1964	RE/1964	1175	
RES/654		1176	
		3295	
		13390	
		13465	
		21512	
		22096	
		1/1119	
		36/1964	
		37/1964	
		38/1964	
		39/1964	
		40/1964	
		41/1964	
		42/1964	
		43/1964	
		45/1964	
		46/1964	
		47/1964	
		48/1964	
		49/1964	
		61/1964	
		63/1964	

This report focuses on acquiring the following properties: 21512, 89/1964, 84/1964, and 83/1964.

5.4 Costs for option 2

5.4.1 Buy out of properties 21512, 89/1964, 84/1964, and 83/1964

The approved costs are summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36

The required changes to the alignment and additional accesses road into the industrial area has a cost implication on the original estimate of option1.

Additional cost due to realignment and additional road		
New alignment and additional access road		R 5,000,000.00
	Sub Total	R 5,000,000.00

There is one business property that must be acquired for the alignment as indicated in figure 6. There are also an additional three residential properties that must be acquired in Buitesig other than that allowed for in the option1 design. They are 89/1964, 84/1964, and 83/1964ro Property 21512 is the Bosch franchise and 1479 and 1480 are one owner running a scrap yard.

MacKenzie Properties		
21512		R20,000,000.00
83/1964		R 500,000.00
84/1964		R 500,000.00
89/1964		R 500,000.00
	Sub Total	R21,500,000.00

Note: Costs indicated in table above is estimated figures based on available information available from MMM and must be confirmed during the negotiation phase.

Additional cost to facilitate the acquisition of the property and completing all the legal requirements:

Additional Costs		
Lawyer (Property Administration)		R 2,080,000.00
	Sub Total	R 2,080,000.00

The TOTAL cost for **Option 2 - Buy out of properties 21512, 89/1964, 84/1964, and 83/1964 is R 309,637,083.36** (Excl. VAT)

5.4.2 Relocate of business entity on erven 21512

The approved costs are summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36

The other scenario that was looked at was the relocation of the business entity to a suitable property in the area. New township development that could be carried out on areas that are not utilized could be developed once the road construction is completed.

Figure 5-6: New township development options

The required changes to the alignment and additional access road into the industrial area has a cost implication on the original estimate of option1.

	Additional cost due to realignment and additional road		
--	--	--	--

New alignment and additional access road		R 5,000,000.00
	Sub Total	R 5,000,000.00

The cost of the relocation is as follows:

Mackenzie Properties		
21512 – Auto Gear – Relocate		R 7,500,000.00
83/1964 – Private property - buy out		R 500,000.00
84/1964– Private property - buy out		R 500,000.00
89/1964– Private property - buy out		R 500,000.00
	Sub Total	R 9,000,000.00

Additional cost for township development:

Additional Costs		
Lawyer (Property Administration)		R 2,080,000.00
Town Planning		R 950,000.00
Services – Road		R 6,500,000.00
Services – Water Sewer		R 3,500,000.00
Survey		R 45,000.00
Geotechnical		R 35,000.00
	Sub Total	R 13,110,000.00

The TOTAL cost for **Option 2 - Relocate of properties 21512** and buy out of properties **1478**, **1479 & 1480** is **R 308,167,083.36** (Excl. VAT).

The selling of the remaining erven is not taken into consideration.

6 Alignment Option 3

6.1 Alignment characteristics

The alignment links St Georges Street with a Road-over-Rail bridge with Atherstone Street. A new intersection between Atherstone Street and Mc Gregor Street needs to be designed. MacKenzie Street also needs to be relocated to intersect with the new intersection.

Figure 6-1: Option 3 proposed alignment

Figure 6-2: View from the intersection of Maroela and Atherstone towards McGregor

Figure 6-3: View from the intersection of Barret Kraal Street and Atherstone Street towards McGregor Street

Figure 6-4: View in Atherstone of existing entrances

Figure 6-5: Intersection of Atherstone Street with McGregor Street.

Figure 6-6: Intersection of Atherstone Street and McGregor Street looking towards Mackenzie Street

6.2 Design characteristics

6.2.1 Design speed

The design speed of 60km/h as chosen was used during this design. There was no reason to adjust the design speed for the proposed alignment.

6.2.2 Stopping sight distance (SSD)

Only a preliminary design was done on this option. The proposed alignment does not seem to have an issue with regard to the stopping sight distance. Mc Gregor Street does not have any sight distance issues as it is constructed at the moment. Figure 6-8 indicates the stopping sight distance of Mc Gregor Street as it is without any alterations done to the vertical alignment.

Figure 6-7: Intersection of Atherstone Street and McGregor Street looking towards existing railway bridge

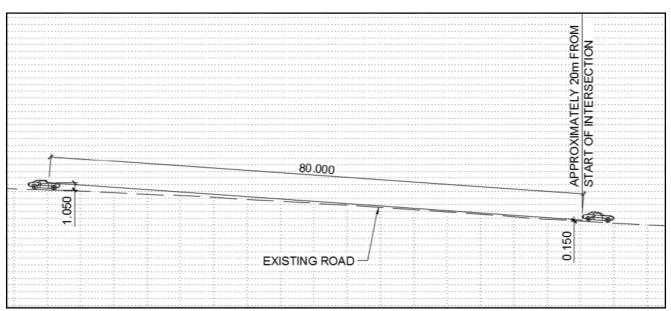


Figure 6-8: Stopping sight distance of Mc Gregor Street before the proposed intersection.

To increase the situation for the intersection the vertical alignment will have to be amended. The alignment is raised by approximately 500mm to ensure that the grade 20m before the start of the intersection is at a 4%. This will assist with the stopping of vehicles in wet weather.

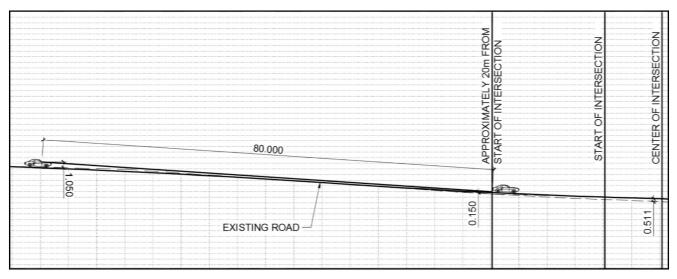


Figure 6-9: Stopping sight distance of Mc Gregor Street and the proposed intersection with raised vertical alignment.

6.2.3 Horizontal curve radius

This alignment provides a more direct route from the road over rail bridge to the intersection with Mc Gregor Street with only one horizontal curve. A s-curve is needed to re-align MacKenzie Street to the new intersection. All of the horizontal curves are larger than the proposed standard of 150m. The curves are ranging from 210m to 400m.

6.2.4 Vertical curvature

The preliminary vertical alignment done from St Georges Street to MacKenzie Street does not have any difficulty to conform with the proposed design standards. The amendment on the existing vertical alignment of Mc Gregor Street discussed in paragraph 6.2.3 would also confirm to the proposed design standards.

Figure 6-10: View of Engen garage on the corner of Atherstone Street and McGregor Street

Figure 6-11 provides layout of property 3292 which is an existing Engen service station. The impact of the raised McGregor street vertical alignment with regards to the entrances of the service station were assessed.

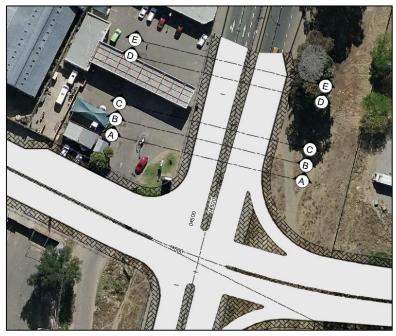
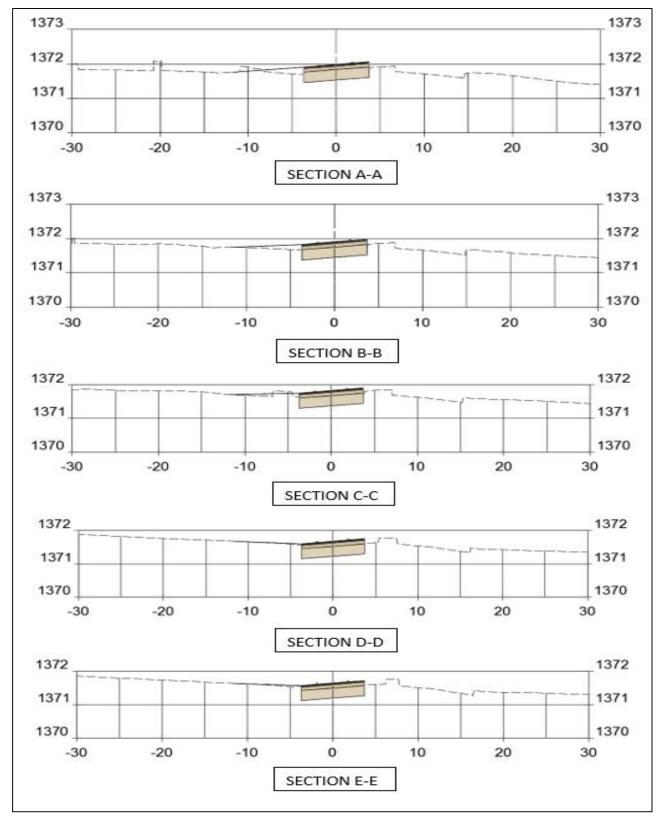



Figure 6-11: Property 3292 on the corner of McGregor and Atherstone street

The entrances could be raised and would not exceed the maximum slope of 10%. Cross sections were done on the left hand side of McGregor street next to the property in question and are shown in the Figure 6-12.

Figure 6-12: Cross sections

Drainage will be provided along McGregor Street to make sure that the storm water does not flow into the property. Unfortunately, the only problem which exists is that the wash-bay of the service station is in the way of the intersection's left turn lane. The wash-bay would have to be removed or relocated.

6.3 Land Acquisition

Figure 6-13 provides the locality of the proposed alignment of access roads and bridge position. It also provides the locality of the properties that must be acquired. No new private properties are affected by this option.

Figure 6-13: Land acquisition option 3

The only affected property is erfen 1/1459 which is utilising a portion of Atherstone street. The agreement that the owner has with the Municipality must be determined (See Figure 6-14).

Figure 6-14: View in Atherstone Street being occupied by AFROX, owner of property 1/1459

The parking layout of the Solid Waste Management Facility on the corner of McKenzie/McGregor Street must be revised or the property must be relocated (See Figure 6-15).

Figure 6-15: Intersection of Atherstone Street and McGregor Street looking towards Municipal Solid Waste Management Centre.

6.4 Costs for option 3

6.4.1 Atherstone Street

The approved costs are summarised below (VAT Excluded).

- Approved construction cost R246 531 300.90
- Approved Professional Fees R 34 515 782.46

It must however be noted that the current appointment from National Treasury for professional fees is only up to stage 4.1.

Approved budget (Excl. VAT)	Sub Total	R 281,057,083.36

There are no additional properties that must be acquired for the alignment as indicated in Figure 6-13.

Additional cost for the design and construction the new Atherstone street:

Additional Costs		
Estimated construction cost		R 31,000,000.00
Professional Fees (7.71%)		R 2,390,100.00
Lawyer (Property Administration)		R 2,080,000.00
Afrox investigation / Compensation		R 1,000,000.00
Survey		R 45,000.00
Geotechnical		R 35,000.00
Traffic modelling (Vissim)		R 45,000.00
	Sub Total	R 36,595,100.00

An amount of R19,500,000.00 was allowed for in Option1 for changes and reconstruction to MacKenzie from Maroela street to McGregor Street that will not be required if this option is accepted.

The TOTAL cost for **Option 3 – Atherstone street** is **R 298,152,183.36** (Excl. VAT).

7. Summary

The three options meet all the design criteria.

Option 1 has the longest horizontal radii and best intersection layouts but due to the properties that must be acquired is the most expensive and will take the longest to go out on tender. The relocation of the existing businesses that must be acquired to new erven could also be considered. There are numerous accesses to businesses that are operational that cannot be closed during the construction period. Existing services are also a major concern when rehabilitating MacKenzie Street.

Option 2 has the smallest horizontal radii coming over the bridge and linking with MacKenzie Street and as well as on the new road to be constructed to the N8. Earthworks for this option is also a lot more than option 1 and 3 hence the additional cost for revised alignment. There is one business stand and three additional private residential properties that must be acquired that influence overall cost of the option and an increased time frame for the construction to commence. The relocation of the existing business that must be acquired to new erven could also be considered. There are numerous accesses to businesses that are operational that cannot be closed during the construction period. Existing services are also a major concern when rehabilitating MacKenzie Street.

The radii for option 3 falls between that of option 1 and option 2. No new properties need to be acquired. There is some realignment required of the access into the property operating as a filling station on the corner of Atherstone and McGregor Streets. Additional warning signs over the Road-over-Rail bridge on McGregor Street will have to be installed informing motorists of the new signalised intersection at Atherstone street. Alterations to the layout of the Municipal Waste Management Centre will be required if this option is accepted. There are only a few accesses along Atherstone Street to contend with during the construction phase as well as very few existing services could be expected.

Option	Description	Cost (Excl. VAT)
Option 1	Buy out of properties 1478, 1479 & 1480	R 322,237,083.00
Option 1	Relocate of properties 1478, 1479 & 1480	R 309,667,083.00
Option 2	Buy out of properties 21512, 89/1964, 84/1964, and 83/1964	R 309,637,083.36
Option2	Relocate of properties 21512 and buy out of properties 1478, 1479 & 1480	R 308,167,083.36
Option 3	Atherstone street	R 298,152,183.36

Option 3 is the most cost effective and will have the shortest time laps before construction can commence.

Phethogo Consulting 122 Nelson Mandela Drive

122 Nelson Mandela Drive Westdene Bloemfontein 9301 South Africa